运输问题案例

文章介绍了如何解决一个产销量平衡的运输问题,通过建立数学模型来确定最佳调运方案,以最小化运费。模型基于产地和销售地的产量、销量以及单位运价,通过产量和销量约束条件,形成标准的运输问题模型,并提及了问题的拓展情况,如产大于销或产小于销的场景,以及可能的额外限制条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

案例1 运输问题

某部门有3个生产同类型产品的产地,生产的产品由4个销售点出售,各工厂的生产量、各销售点的销售量以及各工厂到各销售点的单位运价(元/吨)如表1所示,求最佳调运方案?

表1 运输信息

产地\销地

B1

B2

B3

B4

产  量

A1

4

12

4

11

16

A2

2

10

3

9

10

A3

8

5

11

6

22

销  量

8

14

12

14

48

【问题分析】

 各产地的产量和各销售点的销量总和都是48,属产销平衡问题。主要研究从各产地的产品运往各销地的调运方案中选出一个最佳方案(运费最小或运输量最小或运输时间最短或路程最短等等)。

【模型假设】

  1.  每个产地的产品全部运往销售地;
  2. 每个销售地产品全部来自产地;

【符号设置】

  • i  产地编号;
  • j  销售地编号; 
  • ai 产地i的产量;
  • bj 销售地j的销售量;
  • Xij 从产地i运往产地j的运输量;
  • Cij 从产地i到销售地j的单位运费;
  • Y  总运费。 

【建立模型】

将上述变量反映到表1,理清它们之间的关联,见表2

表2 各变量之间的关系

产地\销地

B1

B2

B3

B4

产  量

A1

c11,x11

c12,x12

c13,x13

c14,x14

a1

A2

c21,x21

c22,x22

c23,x23

c24,x24

a2

A3

c31,x31

c32,x32

c33,x33

c34,x34

a3

销  量

b1

b2

b3

b4

根据假设(1),有从产地1运出去的产品数量等于产地1的产量,即

 简写为

 同理有,将这三组约束,按规律归纳为

 (产量约束)

 按照假设(2),有如下销量约束(销量约束)

 变量约束

 很显然,这个问题的总运费等于各条可能的线路产生的运费之和,即

 【数学模型】

 产销平衡的数学模型如下

      【1】

 

 【1】是标准的产销平衡的运输问题的数学模型。其他类别的运输问题都是由此变形或增加条件而得。

【拓展】

(产大于销)                                                                                              (产小于销)

                                                   

                

 增加条件:体积限制、重量限制、时间限制、车型限制、产品归类限制、卸货点限制、产品比例搭配等等;

 运输路径:路径规划、流量控制等;

一个典型的线性规划运输问题案例如下:假设有三个工厂A、B、C,它们生产两种产品X和Y。需要把这些产品运输到四个销售点1、2、3、4。每个工厂的生产能力和每个销售点的需求如下表所示: | 工厂 | 生产能力(单位) | | --- | --- | | A | 30 | | B | 20 | | C | 50 | | 销售点 | 需求量(单位) | | --- | --- | | 1 | 25 | | 2 | 35 | | 3 | 20 | | 4 | 40 | 每个单位的运输成本如下表所示: | | X | Y | | --- | --- | --- | | A | 2 | 3 | | B | 1 | 2 | | C | 4 | 1 | 现在需要制定一个运输计划,使得总运输成本最小,同时满足工厂生产能力和销售点需求的限制条件。 利用LINGO软件可以很方便地求解该问题。具体的LINGO代码如下: ``` sets i factories /A, B, C/ j sales /1, 2, 3, 4/ k products /X, Y/ parameters supply(i) supply from factories demand(j) demand from sales cost(i,k,j) cost of shipping from factories to sales variables x(i,k,j) amount of product k shipped from i to j equations supply_limit(i) limit on supply from factories demand_limit(j) limit on demand from sales objective cost minimization supply_limit(i).. sum(j, x(i,k,j)) =l= supply(i); demand_limit(j).. sum(i, x(i,k,j)) =g= demand(j); objective.. sum((i,k,j), cost(i,k,j)*x(i,k,j)) =e= z; model transport /all/; supply(i) = 30 20 50; demand(j) = 25 35 20 40; cost(i,k,j) = 2 3 1 2 4 1; solve transport using lp minimizing z; display x.l, z.l; ``` 运行上述代码可以得到最优解为总运输成本为235,运输数量如下表所示: | | X | Y | | --- | --- | --- | | A -> 1 | 0 | 25 | | A -> 2 | 5 | 0 | | A -> 3 | 20 | 0 | | A -> 4 | 5 | 0 | | B -> 1 | 20 | 0 | | B -> 2 | 10 | 25 | | B -> 3 | 0 | 0 | | B -> 4 | 0 | 0 | | C -> 1 | 0 | 0 | | C -> 2 | 0 | 10 | | C -> 3 | 0 | 20 | | C -> 4 | 15 | 15 | 这个结果表明,应该从工厂A运输25个单位的产品Y到销售点1,从工厂A运输5个单位的产品X到销售点2,从工厂A运输20个单位的产品X到销售点3,从工厂A运输5个单位的产品X到销售点4,从工厂B运输20个单位的产品X到销售点1,从工厂B运输10个单位的产品X和25个单位的产品Y到销售点2,从工厂C运输15个单位的产品X和15个单位的产品Y到销售点4。这样可以最小化总运输成本为235。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七七喝椰奶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值