大模型微调技术通常指的是在大型预训练模型的基础上,通过少量的参数调整来适应特定任务或领域的技术。以下是一些常见的大模型微调技术:
微调(Fine-tuning):
这是大型模型微调中最常见的技术。在这种方法中,预训练模型的参数会根据特定任务进行调整。这通常涉及到在模型的顶部添加一个新的输出层,并针对新任务对模型进行训练。
特征提取(Feature Extraction):
在这种方法中,预训练模型的底层被用作特征提取器,其顶层被替换或修改以适应新任务。底层模型的参数在微调过程中保持不变。
冻结层(Layer Freezing):
在微调过程中,可以冻结预训练模型的部分层,只对模型的某些层进行训练。这有助于减少过拟合,并保持模型在原始任务上学到的知识。
学习率调整(Learning Rate Scheduling):
在微调过程中,可以采用不同的学习率调整策略。例如,可以先用较低的学习率训练整个模型,然后用较高的学习率仅对模型的顶层进行微调。
多任务学习(Multi-task Learning):
在这种方法中,模型同时在多个相关任务上进行训练。这有助于模型学习更泛化的特征表示,从而提高在特定任务上的性能。
提示学习(Prompt Learning):
提示学习是一种新兴的微调技术,特别是在自然语言处理领域。它通过设计“提示”或“指令”来引导模型生成期望的输出,而不是直接修改模型参数。
参数高效微调(Parameter-efficient Fine-tuning):
这种技术旨在通过只调整一小部分参数来适应新任务,从而减少微调所需的数据量和计算资源。例如,使用适配器(Adapters)或低秩适配(Low-rank Adaptation)等方法。
持续学习(Continuous Learning):
持续学习或终身学习是指模型在处理连续的任务时不断学习,而不是仅针对单一任务进行微调。这要求模型能够有效地保留旧知识,同时快速适应新知识。
对比学习(Contrastive Learning):
对比学习是一种自监督学习技术,可以用于微调大型模型。通过比较不同样本的特征表示,模型可以学习到更好的泛化能力。
这些技术可以根据具体的应用场景和需求进行选择和组合,以达到最佳的微调效果。在实际应用中,微调策略的选择需要考虑任务特性、数据量、计算资源等因素。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓