大语言模型学习路线:从入门到实战
在人工智能领域,大语言模型(Large Language Models, LLMs)正迅速成为一个热点话题。
本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。
适应人群
- 已掌握Python基础
- 具备基本的深度学习知识
学习步骤
- 本路线将通过四个核心模块进行学习,如果希望打基础可以优先学习模块四:NLP基础
- 学习比例遵循1:2.5的规则,即每观看一部分视频内容后,应至少投入2.5倍的时间进行实践练习。
- 百分号表示学习内容的比例,如“Transformers库(7%)”表示该部分内容占整个学习路线的7%。
模块一:Hugging Face平台入门
- Transformers库(7%):理解如何使用Transformers进行模型的加载和预测。
- Datasets库(4%):学习如何处理数据
- Tokenizers库(4%):学习如何进行有效的文本分词。
- PEFT库(5%):掌握模型训练和加速的高级技术。
- DeepSpeed库(4%):模型加速训练的底层技术。
建议视频教程:搜索“Hugging Face教程”在B站或Coursera上找到相应的课程。
模块二:大模型基础
- 预训练模型微调(10%):学习如何根据自己的数据集微调模型。
- Llama2模型学习(6%):特别是分词器、输入输出具体格式、模型结构
- ChatGLM模型学习(3%)
- GPT-2模型学习(4%)
- OpenAI API的调用(2%):学习如何使用常见的大语言模型接口。
- Prompt工程(1%):学习模型的使用技巧。
- RLHF技术(1%):学习高级模型训练技术。
- LangChain框架(2%):学习如何使用LangChain进行模型开发
建议视频教程:在YouTube或B站搜索模型名称加“教程”关键词。
模块三:测验部分
通过实际项目测试所学知识。
- 生成式文本摘要(7%):利用大模型生成文章或报告的摘要
- 机器翻译(8%):使用大模型完成一种语言到另一种语言的文本翻译任务,了解BLEU评分等
- 问答系统(9%):利用大模型和知识库,构建单轮或多轮问答系统
学习建议:当感到学习疲累时,尝试完成这一部分的实践项目,以检验和巩固学习成果。可以在Kaggle上找到相应的比赛项目。
模块四:NLP基础
- PyTorch语法(2%)
- NumPy运算(2%)
- Transformer架构(5%)
- 自注意力机制(4%)
- 词嵌入(3%):理解词嵌入(Word Embedding)的概念和方法,如Word2Vec、GloVe。
- 序列模型(3%):学习RNN、LSTM、GRU等序列模型的原理和应用
- 文本预处理(2%):掌握NLP处理的基础技术。
- 基本任务和评估指标1%):了解NLP的基本任务(如命名实体识别、依存句法分析)和相应的评估指标。
- 深度学习中的GPU原理(1%):并行计算、CUDA编程等
建议视频教程:Coursera上的“NLP专项课程”或B站的“PyTorch教程”。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓