今天,又学习并搭建了AnythingLLM+DeepSeek 本地知识库。
本着试一试的态度,竟然再次被AI的能力震惊到了……
原来,最快的方式,已经是AI了。
先上结果,后附过程。
上传的一个Excel表的数据样子
一个excel,里面有两个Sheet,分别是24年和23年,里面统计了各市场各品类的数据结果。
上传到AmythingLLM 后,自动解析为2个表,如下:(注意,完全是本地的向量化……即所谓的本地私有化知识库)
原本想上传经过精心清洗过的有明度量和维度的规范数据表的,但手快上传了清洗和整理之前的,竟然也有下面的这些表现!
开始对话式问问题
Q1 Fun Snack 23年与24年的累计产量
经过大几秒的计算以后,DeepSeekR1给出了如下结果:
根据提供的2023年(Context 0)和假设为2024年(Context 1)的数据计算:
2023年 Fun Snack 累计产量
中国:20,189,501
马来:1,653,282
印度:7,887,648
总计:29,730,431
2024年 Fun Snack 累计产量
中国:23,701,270
马来:1,648,789
印度:8,338,982
总计:33,689,041
(注:假设 Context 1 为2024年数据,实际需确认数据年份标签)
计算出来后,我真的和我快速用Tableau的结果做了个对比,丝毫不差呀……
Q2 上难度:24年全工厂总产量按品类的分布情况
根据Context 1(假设为2024年数据)计算:
2024年全工厂总产量分布
-
Fun Snack
中国:23,701,270
马来:1,648,789
印度:8,338,982
总计:33,689,041(67.2%) -
Vitality Nutrition
中国:5,144,848
马来:703,103
印度:3,858,981
总计:9,706,932(19.4%) -
Delicate Care
中国:4,511,191
马来:1,126,660
印度:1,069,231
总计:6,707,082(13.4%)
全厂总产量:50,102,055
(注:百分比基于四舍五入,总和可能存在0.1%误差)
同样,不仅给出了结果,还给出了分市场的子数,赶紧和Tableau的做一下验证,百分比完全正确!
Q3 继续上难度:对比24年和23年,哪个市场增长最猛,哪个增长最弱。带动或影响增长的品类是什么?分别发生在哪几个月份?
2023年 vs 2024年市场增长对比分析
1. 增长最猛市场:中国(+10.3%)
-
核心驱动品类:Fun Snack(增长3.51M,占比总增长的112.8%)
-
主要下降月份:6月(-314K)、7月(-243K)、8月(-678K)、9月(-231K)
-
1月(+623K)、5月(+822K)、8月(+985K)、10月(+636K)、12月(+799K)
-
爆发月份:
-
拖累品类:Delicate Care(下降1.36M,抵消了44%的总增长)
2. 增长最弱市场:马来(+2.18%)
-
增长受限原因:
-
Vitality Nutrition(+32.9K):2月(+7.5K)、3月(+20.4K)、5月(+11.4K)、8月(+11.9K)
-
Delicate Care(+45.8K):1月(+18.9K)、4月(+50.8K)、7月(+38.4K)、12月(+27.1K)
-
Fun Snack小幅下降(-4.5K),抵消了其他品类的增长。
-
增长品类:
3. 印度(+7.53%):均衡增长
-
核心驱动品类:Vitality Nutrition(+566.4K,占比总增长的61%)
-
高增长月份:4月(+97.7K)、5月(+95.6K)、6月(+187K)、10月(+94.5K)、12月(+100.7K)
-
次要贡献:Fun Snack(+451.3K),但部分被Delicate Care下降(-88.9K)抵消。
关键结论
-
中国的爆发式增长依赖Fun Snack在旺季(1、5、8、10、12月)的产能提升,但Delicate Care年中大幅下滑需警惕。
-
马来增长疲软因Fun Snack需求波动,需优化产能分配至Vitality Nutrition和Delicate Care的强势月份(4、7、12月)。
-
印度的Vitality Nutrition表现亮眼,尤其在年中至年末(4-6、10-12月),可进一步扩大优势。
(注:数据基于Context 0为2023年、Context 1为2024年的假设,实际需确认年份标签。)
惊呆了……来不及验证了,用Python和Tableau做了那么多花里胡哨的图和表,AI直接给了一份这样的“报告”…就这数据和结论的组织能力,我是自愧不如啊。
还是来验证一下数据吧:
增长最快与最慢的市场,判断完全正确,Tableau的图如下……
核心驱动品类的拆解,也完全正确。Tableau图示如下。但是AI算出来的“Vitality Nutrition(+566.4K,占比总增长的61%) ” 从下面的图里还看不出,还要另做图……
Q4 再次升维,AI究竟从数中提炼了哪些Insight:结合23年与24年各市场各品类的增长情况,为25年提炼5条建议,以应对全方位增长和生产安排(请考虑产能互补、排产平稳等因素)。
2025年战略建议:产能优化与全域协同
1. 旺季产能互补:跨市场联动调度
-
重点实施:
-
中国在Fun Snack旺季(1、5、8、10、12月)可调用马来/印度的闲置产能(如马来2-3月淡季、印度4-6月非高峰期),通过区域协同减少中国本土超负荷压力。
-
印度Vitality Nutrition在年中(4-6月)需求高峰时,可借调中国设备支持,同时平衡中国同期Delicate Care的产能闲置。
2. 排产平稳化:月度产能削峰填谷
-
策略落地:
-
针对中国Delicate Care下半年(6-9月)需求萎缩,提前在Q2预生产部分库存,避免产能骤降;同期将资源转向马来Delicate Care的7-12月旺季。
-
马来Fun Snack全年波动大,建议将Q1-Q2部分产能转移至印度Fun Snack淡季(7-9月),实现区域间“淡旺季对冲”。
3. 核心品类聚焦:高增长赛道定向投入
-
优先级分配:
-
中国:锁定Fun Snack(占67%总产能)为战略核心,新增柔性产线适配其1、5、8月爆发需求,同步压缩Delicate Care非必要产能。
-
印度:全力扩大Vitality Nutrition(年增61%)产能,重点在4-6月、10-12月部署双班制,抢占区域市场份额。
4. 风险对冲:多品类组合生产
-
实施路径:
-
马来市场推行“Vitality Nutrition + Delicate Care”捆绑排产(二者合计占比32%),在Fun Snack疲软期(如Q3)优先保障高利润品类,稳定全年增长率。
-
中国在Q4(Fun Snack需求回落期)试点Delicate Care升级产品线,利用现有设备开发高附加值品类,降低单一依赖风险。
5. 数据驱动弹性排产:动态监测与快速响应
-
系统搭建:
-
建立全球产能看板,实时监控各市场品类需求波动(如马来Delicate Care12月突增、印度Fun Snack7-9月疲软),自动触发跨区域调拨指令。
-
引入AI排产算法,基于历史爆发月份(如中国1月、印度4月)预测产能缺口,提前3个月调配资源,避免临时性供应链断裂。
执行保障
-
区域协同机制:设立跨中-马-印的产能调度小组,按季度评估互补可行性。
-
设备模块化改造:生产线适配多品类快速切换(如Fun Snack与Vitality Nutrition共用基础设备),降低转产成本。
-
供应链韧性强化:在马来(增长薄弱点)建立区域性原料储备仓,应对突发性需求波动。
通过上述策略,可实现全域产能利用率提升15%+,同时将季节性波动风险降低20%,支撑可持续增长。
呵呵呵了,就这Insight能力,我要再练X年……
emo了, 折腾的速度快跟不上AI的发展了……
AnythingLLM+DeepSeekR1 部署方式
AnythingLLM+DeepSeek 组合极其简单。我也是跟海量博主学习而来。总结来说有以下几个关键步骤:
-
从AnythingLLM 官网 下载安装程序,像正常安装所有程序一样,完成安装即可;
-
从DeepSeekAPI Platform 注册并创建API Key,25年1月前免费用,即使收费也是拼多多的价;
-
运行LLM,从海量大模型服务中,选择DeepSeek,并使用reasoner.
-
完成配置,进入工作空间。
-
上传试用文档,开始探索。
DeepSeek-API key
配置DeepSeek R1 ,
贴心的注意:尽管所有文件都是在本地向量化,但是由于是调用的Deepseek服务,DeepSeek仍然可以看到对话内容。
如果要完全完全私有化,就需要Ollma等下载到本地的模型调用,但是没试过,不确定计算能力如何。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓