Deepseek AI本地推理设备搭建
好消息:基于我们一直使用的AMD EPYC Rome基准系统获得了稳定性能表现😁 这套初始配置依然出色!设备拥有者现在可以在Q4 671b完整模型上获得4.25-3.5 TPS(每秒令牌数)。完整版16K以上上下文窗口的模型体验远胜精简版,值得投入。纯CPU运行时可同时运行视觉模型等小型模型。
2024/02/01补充参数:
空载功耗:60W(未接GPU)
满载功耗:260W
当前内存速度:2400(3200可能有性能提升)
本地AI CPU计算硬件
若已按我之前的3090四卡指南装机,恭喜你!7702依然强劲。建议升级同价位性能更强的CPU,但本文结果基于7702。MZ32-AR0主板通过16个DDR4 3200内存插槽可轻松实现512GB-1TB内存扩容(注意:不能混用LRDIMM和RDIMM内存!)
本地AI设备组件
-
机架框架 $55
-
MZ32-AR0主板 $500
-
420mm水冷 Corsair h170i elite capellix xt $170
-
EPYC水冷支架
-
AMD EPYC 7702(64核)$650 / 7V13 $599 / 7C13 $735
-
512GB 2400 ECC内存 $400
-
1TB NVMe 三星980 Pro $75
-
850W电源 $80(纯CPU推理够用,需接GPU建议1600W)
(2025年1月29日报价)
总成本约$2000(使用512GB 2400内存和7702时)。建议优先升级7C13/7V13 CPU,其次768GB内存,最后考虑3200内存。
服务器架设要点
-
内存散热:用4个80mm风扇组成风墙直吹内存条
-
主板升级:MZ32-AR0 V3版主板直接支持Milan架构CPU
-
BIOS设置:NPS=1、SMT关闭、cTDP=200、BoostFmax=3400等
本地AI软件部署
Ubuntu 24基础安装
-
通过BMC管理界面挂载Ubuntu 24.04 ISO
-
BIOS设置:UEFI/Legacy模式、性能优先配置
-
网络配置:使用netplan设置静态IP
Ollama安装步骤
# 安装基础工具``sudo apt install -y htop git glances nano`` ``# 下载安装Ollama``curl -L <https://ollama.com/download/ollama-linux-amd64.tgz> -o ollama.tgz``sudo tar -C /usr -xzf ollama.tgz``sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama`` ``# 服务配置``sudo nano /etc/systemd/system/ollama.service``# 添加环境变量:``Environment=OLLAMA_NUM_PARALLEL=62``Environment=OLLAMA_KEEP_ALIVE=3h
OpenWEBUI部署
# 安装Docker``sudo apt-get install docker-ce`` ``# 部署Dockge管理界面``sudo mkdir -p /opt/stacks /opt/dockge``cd /opt/dockge``sudo curl -O <https://raw.githubusercontent.com/louislam/dockge/master/compose.yaml>``docker compose up -d`` ``# OpenWEBUI配置``version: "3.3"``services:` `open-webui:` `ports:` `- 7000:8080` `image: ghcr.io/open-webui/open-webui:latest``
性能优化建议
-
上下文长度设置为16384(16K)
-
线程数设为62(保留2个核心)
-
启用mlock防止内存分页
-
保持连接存活时间3小时
完整配置后可实现3.5-4.25 TPS的推理速度。该方案虽需技术调试,但能获得完整版模型的优质体验。后续将推出llama.cpp等框架的优化指南。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓