【AI Agent】搭建股票分析智能体

简介

本文基于Dify工具,以DeepSeek-R1为LLM基底通过“股票数据实时获取工具”获取股票的历史K线数据最新行情数据今日资金流向历史资金流向十大流通股东信息季度业绩表现进行技术面及资金面分析,输出股票的分析报告给予投资人进行投资参考。

  • 工作原理

股票分析助手

  • 使用截图

image-20250419192405682

image-20250419192456103


1. 股票指标工作流

在工作流中通过HTTP请求调用“股票数据实时获取工具”的 API,获取股票实时数据

image-20250419210841967

2. 股票分析助手Agent

  • 提示词

# 角色
你是一名投资理财专家,现在需要帮我分析股票是否具有投资价值

# 工作步骤
1. 输入6位数字代码,如果用户未提供代码,自己使用从内置知识中获取股票代码
2. 使用stock_indicators_all工具查询行情数据,包含历史K线和最新行情
3. 使用stock_indicators_all工具查询资金流向,包含今日资金流向和历史资金流向
4. 使用stock_indicators_all工具查询股票信息,包含十大流通股东信息变动和公司季度业绩表现
5. 注意严格按照步骤执行,最后分析总结,以Markdown格式输出,不输出```markdown

# 输出模板
标题:股票名称(股票代码)投资价值分析报告
一、关键指标分析
1. 最新行情
* 最新价
* 动态市盈率
* 涨跌幅
* 换手率
* 总市值
2. 资金流向
* 今日资金流向
* 历史资金流向
二、技术分析
1. 支撑位与压力位
* 支撑位
* 压力位
2. K线形态
三、资金面深度解析 
1. 主力行为特征 
2. 流动性评估
四、投资建议
1. 机会评估  
2. 风险预警  
3. 操作策略
4. 买入价格、止盈价格、止损价格
五、股票评级:
买入、增持、中性、减持和卖出

stock_indicators_all 是股票指标查询工具,可用于查询历史K线、最新行情、今日资金流向、历史资金流向、十大流通股东信息

image-20250419191222160

3. 关于股票数据实时获取工具

Python获取股票实时数据的库有很多,我这里使用Flask和efinance库实现

  • Flask 2.3.3: Web框架

  • efinance 0.5.4: 股票数据获取库

获取股票数据的API服务,接口请求示例:获取股票历史日K线数据

GET /api/daily_kline/<stock_code>

参数说明:

  • stock_code: 股票代码,如 000001(平安银行)

返回数据示例:

{
  "success": true,
"data": [
    {
      "日期": "2025-01-01",
      "开盘": 10.0,
      "收盘": 10.5,
      "最高": 10.8,
      "最低": 9.9,
      "成交量": 1000000,
      "成交额": 10500000
    }
  ]
}

「动手能力强的小伙伴应该知道怎么实现了」

「没基础的小伙伴也不要紧,下面有篇包含DSL文件和“股票数据实时获取工具”代码下载地址」

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

 

### 创建或配置AI Agent智能体 #### 选择合适的平台和服务 为了高效地创建和管理AI Agent智能体,建议选用支持自动化部署、监控以及具备良好API接口的服务提供商。云服务供应商如AWS、Google Cloud Platform (GCP) 和 Microsoft Azure 提供了丰富的工具集来帮助开发者构建复杂的AI解决方案[^1]。 #### 设计Agent的功能模块 设计阶段需考虑智能体的具体应用场景及其所需执行的任务类型。这可能涉及自然语言处理(NLP),图像识别或其他特定领域的能力。对于聊天机器人的升级版——即更通用的人工智能代理(agent),应着重于增强其对话管理和上下文理解能力。 #### 开发环境准备 安装必要的开发库与框架是必不可少的一环。Python作为最受欢迎的数据科学编程语言之一,在此过程中扮演着重要角色。例如: ```bash pip install transformers torch flask ``` 上述命令用于安装Hugging Face的`transformers`库(提供预训练模型)、PyTorch深度学习框架和支持Web API构建的Flask服务器端微框架。 #### 实现核心逻辑 编写能够接收输入并返回响应的应用程序代码至关重要。这里给出一段简单的基于FastAPI实现的大规模语言模型(LLM)集成案例: ```python from fastapi import FastAPI, Request import requests app = FastAPI() @app.post("/predict") async def predict(request: Request): data = await request.json() prompt_text = data.get('prompt', '') response = requests.post( "https://api.openai.com/v1/engines/davinci-codex/completions", headers={"Authorization": f"Bearer YOUR_API_KEY"}, json={ 'prompt': prompt_text, 'max_tokens': 50 } ) result = response.json().get('choices')[0].get('text') return {"response": result} ``` 这段代码展示了如何通过HTTP POST请求将用户提供的文本传递给OpenAI的Davinci Codex引擎,并获取相应的回复[^2]。 #### 测试与优化 完成初步编码之后,务必进行全面测试以验证功能正确性和性能表现。针对不同场景下的交互效果进行评估,并据此调整参数设置或改进算法结构。此外,还可以利用A/B Testing等手段持续迭代产品版本直至达到预期目标。 #### 部署上线 最后一步就是把精心打造好的AI Agent推送到生产环境中去。考虑到安全性和稳定性因素,推荐采用容器化技术(Docker/Kubernetes)来进行打包发布;同时也要确保有足够的计算资源支撑在线推理过程中的负载需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值