基于Yolov8的道路缺陷检测,加入MobileViTAttention、PConv、WIOU 、DCNV2提升检测精度

该文介绍了基于yolov8的道路缺陷识别系统,通过数据增强方法如medianBlur和GaussianBlur扩充了数据集,使用split_train_val.py和voc_label.py处理数据。文中提到加入WIOU、DCNV2、PConv以及MobileViTAttention等技术分别提升了模型的map值,显著提高了小目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.数据集介绍

1.1数据增强,扩充数据集

1.1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt

1.1.2 通过voc_label.py得到适合yolov5训练需要的

2.基于yolov8的道路缺陷识别

2.2 加入WIOU 

 2.3 加入DCNV2

 2.4 加入PConv

2.5 MobileViTAttention


🏆 🏆🏆🏆🏆🏆🏆Yolov8成长师🏆🏆🏆🏆🏆🏆🏆
🍉🍉进阶专栏Yolov8魔术师:http://t.csdn.cn/fUzZ7🍉🍉
✨✨✨魔改网络、复现前沿论文,组合优化创新
🚀🚀🚀小目标、遮挡物、难样本性能提升
🌰 🌰 🌰在不同数据集验证能够涨点,对小目标涨点明显

🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉🍉

1.数据集介绍

缺陷类型:crack 

数据集数量:195张

1.1数据增强,扩充数据集

通过medianBlur、GaussianBlur、Blur3倍扩充得到780张图片

按照train、val、test进行8:1:1进行划分

1.1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

1.1.2 通过voc_label.py得到适合yolov5训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val']
classes = ["crack"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

2.基于yolov8的道路缺陷识别

2.1 实验结果

原始map为0.739

检测结果

2.2 加入WIOU 

https://cv2023.blog.csdn.net/article/details/130200951

 map从0.739提升至0.781

 2.3 加入DCNV2

https://cv2023.blog.csdn.net/article/details/130215147

map从0.739提升至0.783

 2.4 加入PConv

https://cv2023.blog.csdn.net/article/details/130225022

map从0.739提升至0.774

2.5 MobileViTAttention

Yolov8涨点技巧:MobileViTAttention助力小目标检测,涨点显著,MobileViT移动端轻量通用视觉transformer_AI小怪兽的博客-CSDN博客

 原始0.739提升至 0.772 ,涨点明显

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值