定位损失函数
在目标检测中,定位损失函数是目标检测模型中用来衡量预测边界框与真实边界框之间差异的数学函数。它通过计算两者之间的距离或重叠程度,指导模型的训练过程,以便更准确地定位目标物体。重要性在于:
精确定位: 确保模型能够准确预测目标物体的位置和大小,减少预测误差。
优化模型性能: 通过计算损失值,调整模型参数,提高检测精度,降低误检和漏检率。
引导学习过程: 在训练过程中,定位损失函数为模型提供反馈,帮助其学习到更有效的特征表示。
提高鲁棒性: 设计合理的损失函数可以使模型在不同场景、光照和遮挡条件下依然表现良好。
多任务学习: 在同时进行目标分类和定位时,合理的损失函数组合能够平衡两者的学习效果,确保模型在各方面的性能。
YOLOv8框架下定位损失函数的添加
YOLOv8版本:v8.2.90 自带定位损失:GIoU, DIoU, CIoU
修改位置:*\ultralytics\utils\metrics.py
添加:Wise-IoU
class WIoU_Scale:
'