Yolov8-pose关键点检测:大核卷积涨点系列 | Shift-ConvNets,具有大核效应的小卷积核 | 2024年最新论文

本文介绍了Shift-ConvNets如何通过移位操作使小卷积核达到大卷积核的效果,提升YOLOv8模型的性能。Shift-ConvNets解决了大卷积核带来的计算成本和兼容性问题,实现在稀疏机制下捕获远程依赖关系,同时保持硬件友好。手把手教程涵盖了将Shift-Conv整合到YOLOv8-pose的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文独家改进:大的卷积核设计成为使卷积神经网络(CNNs)再次强大的理想解决方案,Shift-ConvNets稀疏/移位操作让小卷积核也能达到大卷积核效果,创新十足实现涨点,助力YOLOv8

   YOLOv8-Pose关键点检测专栏介绍:http://t.csdnimg.cn/gRW1b

✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;

🚀🚀🚀模型性能提升、pose模式部署能力;

🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;

### 图卷积网络 (Graph Convolutional Network, GCN) 在姿态估计中的应用 #### 背景与动机 图卷积网络是一种基于图结构数据的深度学习方法,能够有效处理具有拓扑关系的数据。在姿态估计领域,人体骨架可以被建模为一种特殊的图结构,其中节代表关节位置,边则表示关节间的连接关系。这种天然的匹配使得GCN成为解决姿态估计问题的理想工具。 #### 创新与技术细节 1. **语义信息捕捉** SemGCN 是一种专门设计用于回归任务的图卷积网络架构[^2]。它通过端到端的学习方式捕获局部和全局节的关系,从而更好地理解人体骨骼中隐含的语义信息。这种方法无需额外监督或手动设定规则即可实现高效的人体姿态估计。 2. **减少参数量与提升效率** 有研究表明,在保持甚至超越现有技术水平的同时,SemGCN 可以显著降低模型参数的数量——高达90% 的缩减。这表明该方法不仅提高了计算资源利用率,还增强了模型的实际部署能力。 3. **动态图结构调整** 针对传统 GCN 存在的一些局限性(如固定不变的特征转换矩阵以及受限于预定义的身体关节连通性的静态图),某些工作提出了权重调制和亲密度调节机制来适应更复杂的运动模式[^3]。例如,在跑步过程中手臂与腿部之间的协调动作可能并不完全遵循标准解剖学上的连接规律;因此允许灵活修改底层图结构对于提高预测准确性至关重要。 4. **引入 Shift 结构优化 TCN 和 GCN** 将 CNN 中经典的 shift 操作融入到时空维度下的图形卷积运算当中是一项重要突破[^4]。具体而言,这一策略既适用于空间域内的 graph convolution module ,也扩展到了时间序列方向上的 temporal convolution network 。如此一来便幅削减了整体系统的参数规模并简化了相应的计算流程。 #### 实际案例分析 - 对于视频级别的行人再识别任务来说,采用 Spatial-Temporal Graph Convolutional Networks(ST-GCNs)[^1], 把输入图片分割成若干区域当作独立节构建初始 patch graphs , 并利用 structural gcn modules 来提取细粒度的空间特性,同时借助 temporal gcn modules 建立跨帧间的时间依赖关系。最终组合得到综合表征向量送入分类器完成身份判别过程。 - 当涉及到单张图像或者多视角场景下的人物三维重建时,则可考虑运用 semgcn 类型算法直接从二维关键点坐标映射至对应的三维世界坐标系内对应的位置分布情况。由于其具备较强泛化能力和较低内存占用特所以在实际工程实践中非常受欢迎。 ```python import torch from torch_geometric.nn import GCNConv class PoseEstimationGCN(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(PoseEstimationGCN, self).__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, data): x, edge_index = data.x, data.edge_index # First layer of GCN with activation function applied. x = torch.relu(self.conv1(x, edge_index)) # Second layer producing final embeddings or predictions. x = self.conv2(x, edge_index) return x ``` 上述代码片段展示了一个简单的两层 GCN 构造实例,可用于初步探索如何针对特定应用场景定制自己的 pose estimation model. --- ###
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值