💡💡💡创新点:Mamba UNet采用了纯基于视觉Mamba(VMamba)的编码器-解码器结构,融入了跳跃连接,以保存网络不同规模的空间信息。这种设计有助于全面的特征学习过程,捕捉医学图像中复杂的细节和更广泛的语义上下文。我们在VMamba块中引入了一种新的集成机制,以确保编码器和解码器路径之间的无缝连接和信息流,从而提高分割性能。
💡💡💡在VSS块中,输入特征首先遇到线性嵌入层,然后分叉为双路径。一个分支经历深度卷积和SiLU激活,继续到SS2D模块,以及层后归一化,与SiLU激活后的备用流合并。
💡💡💡如何跟YOLOv8结合:VSSBlock结合C2f替代YOLOv8的C2f,结构图如下