YOLOv12涨点优化:卷积魔改 | 轻量化改进 | 分布移位卷积(DSConv),提高卷积层的内存效率和速度

 💡💡💡本文改进内容: YOLOv12如何魔改卷积进一步提升检测精度?提出了一种卷积的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。 DSConv将传统的卷积内核分解为两个组件:可变量化内核(VQK)和分布偏移

 💡💡💡计算量比较,原始YOLOv12n为6.5 GFLOPs,改进后的为4.7 GFLOPs

YOLOv12 summary: 465 layers, 2,569,218 parameters, 2,569,202 gradients, 6.5 GFLOPs
YOLOv12-DSConv2D summary: 465 layers, 2,569,218 parameters, 2,569,202 gradients, 4.7 GFLOPs

改进结构图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值