💡💡💡本文改进内容: YOLOv12如何魔改卷积进一步提升检测精度?提出了一种卷积的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。 DSConv将传统的卷积内核分解为两个组件:可变量化内核(VQK)和分布偏移
💡💡💡计算量比较,原始YOLOv12n为6.5 GFLOPs,改进后的为4.7 GFLOPs
YOLOv12 summary: 465 layers, 2,569,218 parameters, 2,569,202 gradients, 6.5 GFLOPs
YOLOv12-DSConv2D summary: 465 layers, 2,569,218 parameters, 2,569,202 gradients, 4.7 GFLOPs
改进结构图如下: