随机过程:布朗运动

1.一维布朗运动

一维布朗运动是指一个粒子(也可以是分子或颗粒)在一维空间中随机运动的现象。它是由英国生物学家罗伯特·布朗于1827年观察到的,被称为布朗运动。
在一维布朗运动中,粒子在时间的推动下,沿着一条直线上的不同方向进行随机运动,其路径呈现出无规律的波动。这是由于粒子与周围分子的碰撞和动能转移引起的。
一维布朗运动经常用于描述微观尺度下物质的扩散现象,例如液体或气体中微小颗粒的运动。它是一个随机过程,无法精确地预测粒子的位置,但可以通过统计方法描述其平均行为。以一维标准布朗运动 B ( t ) B(t) B(t)为例,它满足:

  • 独立增量:设时间 t 1 < t 2 < t 3 t_1<t_2<t_3 t1<t2<t3,那么增量 B ( t 3 ) − B ( t 2 ) B(t_3)-B(t_2) B(t3)B(t2)独立于 B ( t 1 ) B(t_1) B(t1)
  • 稳定增量和正态性:设时间 t 1 < t 2 t_1<t_2 t1<t2,那么增量 B ( t 2 ) − B ( t 1 ) B(t_2)-B(t_1) B(t2)B(t1)服从均值为0,方差为 t 2 − t 1 t_2-t_1 t2t1的正态分布。
  • B ( t ) B(t) B(t)几乎处处连续。
  • B ( 0 ) = 0 B(0)=0 B(0)=0.
    对于一个一维布朗运动,对其取一阶差分 X ( n ) = B ( n + 1 ) − B ( n ) X(n)=B(n+1)-B(n) X(n)=B(n+1)B(n),可以发现 X ( n ) X(n) X(n)实际上是一串独立的标准正态分布,其自相关函数为 R ( k ) = E { [ X ( n + k ) − μ ] [ X ( n ) − μ ] } σ 2 R(k)=\frac{E\{[X(n+k)-\mu][X(n)-\mu]\}}{\sigma ^2} R(k)=σ2E{[X(n+k)μ][X(n)μ]}其中, μ \mu μ是它们公共 的均值, σ \sigma σ是它们公共的方差。
    一维布朗运动差分后的序列的自相关函数是一个在0点处为1,其他地方为0的函数,而其他的平稳时间序列的自相关函数,在0点处一定是1,在0以外的其他地方未必是0,但也一定是一个[-1,1]之间的数。

2.分布式布朗运动

分布式布朗运动是一种在分布式计算环境中模拟布朗运动的方法。它结合了布朗运动的随机性和分布式计算的特点,用于研究分布式系统中各个节点的行为。它与布朗运动的不同点在于它的增量不再独立,而是具有某种相关性,对于一个布朗运动 B H ( t ) B_H(t) BH(t),有 E [ B H ( t ) B H ( s ) ] = 1 2 ( ∣ t ∣ 2 H + ∣ s ∣ 2 H − ∣ t − s ∣ 2 H ) E\left[ B_H\left( t \right) B_H\left( s \right) \right] =\frac{1}{2}\left( |t|^{2H}+|s|^{2H}-|t-s|^{2H} \right) E[BH(t)BH(s)]=21(t2H+s2Hts2H)如果令 t = s t=s t=s,则 E [ B H ( t ) 2 ] = t 2 H E[B_H(t)^2]=t^{2H} E[BH(t)2]=t2H,所以分布式布朗运动的方差就是 t 2 H t^{2H} t2H。其中,H被称为赫斯特指数,以英国水文学家哈罗德 ⋅ \cdot 赫斯特命名。利用赫斯特指数可以分析时间序列的自相关和自相似性。

  • 当H=1/2时,分布式布朗运动会退化成普通的布朗运动,增量间是相互独立的。
  • 当H>1/2时,增量间会呈现正相关性,从而导致扩散速度显著高于布朗运动。
  • 当H<1/2时,增量间会呈现负相关性,从而导致扩散速度显著慢于布朗运动。

仔细分析股票价格的走势可以发现,股票每天的价格波动很多时候具有很强的相关性。比如当股票大涨时,通常是正相关的,当股票下跌时,通常是负相关的。所以判断赫斯特指数对于分析股票市场的相关性具有重要意义。估计赫斯特指数的方法有很多,本文采用均平方位移法
假定有一个时间序列, { X 1 , X 2 , ⋯   , X n } \{X_1,X_2,\cdots,X_n\} {X1,X2,,Xn}服从某种分布式布朗运动,那么就有 E [ ( X j + k − X j ) 2 ] = σ 2 k 2 H E[(X_{j+k}-X_j)^2]=\sigma^2k^{2H} E[(Xj+kXj)2]=σ2k2H W k = 1 n − k ∑ j = 1 n − k ( X j + k − X j ) 2 W_k=\frac{1}{n-k}\sum_{j=1}^{n-k}{\left( X_{j+k}-X_j \right) ^2} Wk=nk1j=1nk(Xj+kXj)2 W k = σ 2 k 2 H W_k=\sigma^2k^{2H} Wk=σ2k2H两边同时取对数有
l o g W k = l o g σ 2 + 2 H l o g k logW_k=log\sigma^2+2Hlogk logWk=logσ2+2Hlogk l o g k logk logk看成一个变量, l o g σ 2 log\sigma^2 logσ2看成常数项,那么上式就是一个线性方程,2H就是斜率,可以通过线性回归来估算H的值。
下面用python来实现均平方位移法估计赫斯特参数。

import numpy as np

def Hst_estimate(ts):
    kmax = int(np.floor(len(ts)/2))
    if kmax < 2:
        return -1
    y = np.matrix(np.zeros((kmax, 1)))
    x = np.matrix(np.ones((kmax, 2)))
    ts = np.array(ts)
    for k in range(kmax):
        y[k] = np.log(np.mean((ts[k+1:]-ts[:-k-1])**2))
        x[k, 1] = 2 * np.log(k+1)
    beta = np.linalg.inv(x.T.dot(x)).dot(x.T).dot(y)
    H = beta[1]
    return H

下面给定不同的时间序列,来计算赫斯特参数的值:

ts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(Hst_estimate(ts))

计算结果:[[1.]]

ts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,10,9]
print(Hst_estimate(ts))

计算结果:[[0.97359599]]

ts = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,10,9,8,7,6,7,8,9,10]
print(Hst_estimate(ts))

计算结果:[[0.69830922]]

通过比较可以发现,当时间序列出现递减后,赫斯特指数也会出现下降,当然,实际的股票市场不可能会一直递增的,而是一直波动的,所以其赫斯特指数正常情况下应该不会很大,那么H大于多少算大呢?这个就得考虑概率分布问题了,具体如何考虑感兴趣的读者可自行研究。


  • 19
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Matlab 是一种流行的数学软件,用于进行各种数学计算和模拟。布朗运动是一种随机漂移的过程,在Matlab中可以使用随机性质和数学模型来模拟。 在Matlab中,可以使用随机数生成器来模拟布朗运动。首先,我们需要定义一个初始位置和时间步长。然后,通过生成随机数来模拟每个时间步长中的移动距离。这里使用的随机数遵循正态分布,模拟布朗粒子在每个时间步长中的随机运动。 下面是一个简单的Matlab代码用于模拟布朗运动: ```Matlab % 定义初始位置和时间步长 initial_position = 0; time_step = 0.1; num_steps = 1000; % 生成随机数(遵循正态分布) random_numbers = randn(num_steps, 1); % 初始化轨迹数组 trajectory = zeros(num_steps, 1); trajectory(1) = initial_position; % 模拟布朗运动 for i = 2:num_steps trajectory(i) = trajectory(i-1) + sqrt(time_step) * random_numbers(i); end % 绘制布朗运动轨迹 plot(trajectory) xlabel('时间步长') ylabel('位置') title('布朗运动模拟') ``` 运行以上代码,可以得到一个布朗运动的轨迹图。轨迹图展示了粒子在随机时间步长内的位置变化情况。 Matlab提供了丰富的数学函数和图形绘制工具,可以进一步优化和扩展布朗运动模拟。可以使用不同的随机数生成器、调整时间步长和模拟步数、添加噪声等,以更准确地模拟布朗运动。 总而言之,Matlab可以很方便地进行布朗运动模拟,只需使用随机数生成器和数学模型即可。这使得研究者和工程师可以更好地理解和分析布朗运动以及其他随机漂移过程的行为和特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抱抱宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值