💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BP(Back Propagation)神经网络的风电功率预测,是一种经典的机器学习方法,用于处理单变量输入下的多步预测问题。BP神经网络通过反向传播算法调整权重,以减小预测误差,适用于非线性时间序列数据的建模,如风电功率数据。以下是基于BP神经网络进行风电功率预测的研究概述:
研究背景
风电作为一种可再生的清洁能源,其发电量受自然条件影响较大,具有较强的随机性和不确定性。准确预测风电功率对于电力系统的调度、电力平衡和经济效益具有重要意义。BP神经网络以其强大的非线性拟合能力,被广泛应用于风电功率预测领域。
BP神经网络简介
BP神经网络是一种多层前馈网络,包括输入层、一个或多个隐藏层和输出层。通过调整各层间的权重,网络能够学习输入与输出之间的复杂非线性关系。反向传播算法允许网络从输出层到输入层反向传播误差,并据此调整权重,实现网络的学习和优化。
研究方法
-
数据预处理:收集风电场的历史功率数据,进行数据清洗、缺失值处理、数据平滑和标准化处理,以减少噪声影响并统一数据尺度。
-
特征构造:尽管是单变量输入,可以通过构造历史功率的滞后项作为特征,如前一小时、前两小时的功率值等,以捕捉时间序列的动态特性。
-
模型构建:设计BP神经网络结构,确定输入节点数(基于特征构造)、隐藏层的数量和节点数、输出节点数(对应预测的未来时间段数)。选择激活函数,如sigmoid或ReLU,以及适当的损失函数(如均方误差)。
-
训练与验证:将数据集分为训练集、验证集和测试集。使用训练集训练BP神经网络,验证集用于调整网络结构和超参数(如学习率、迭代次数等),以防止过拟合。
-
多步预测:通过一次前向传播,网络可以同时预测未来多个时间点的风电功率。为了连续预测,可以使用前一步的预测值作为下一次预测的输入,但需注意误差累积问题。
-
性能评估:在独立的测试集上评估模型的预测性能,主要评价指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等。
研究挑战与展望
- 数据质量和量:提高数据采集的精确度和频度,增加样本量,尤其是极端天气条件下的数据,以提高模型的泛化能力。
- 模型复杂度与优化:合理选择网络结构和超参数,避免过拟合,同时探索更高效的训练算法,如批量归一化、早停法等。
- 特征选择与提取:研究更有效的特征构造方法,利用特征选择技术减少冗余特征,提高模型预测精度。
- 混合模型与集成学习:结合BP神经网络与其他预测模型(如支持向量机、长短时记忆网络等),或者使用集成学习方法,以期达到更好的预测效果。
总之,基于BP神经网络的风电功率预测研究,旨在利用神经网络的非线性拟合能力,解决风电功率预测中的复杂性和不确定性问题,为风电资源的有效管理和电力系统的稳定运行提供技术支持。随着算法的不断进步和数据处理技术的发展,预测精度和模型的实用性有望得到进一步提升。
📚2 运行结果
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
lstmLayer(25,'Outputmode','last','name','hidden1')
dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(outdim,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取