【无人机】基于分布式模型预测控制的多固定翼无人机的共识控制研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、研究背景与意义

二、关键概念与技术

三、系统建模与仿真

四、研究方法与过程

五、研究结果与应用

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于分布式模型预测控制的多固定翼无人机的共识控制是一种研究领域,旨在实现多架无人机之间的协同飞行任务。这种研究通常涉及到无人机之间的信息共享、协调和决策制定。

在该研究中,每架固定翼无人机都被视为一个独立的智能体,并且可以通过通信网络相互交换信息。基于分布式模型预测控制的方法利用传感器和通信设备来实现无人机之间的环境感知和信息交流,从而共同制定飞行策略和路径规划。

通过共识控制,多固定翼无人机可以实现任务的协同完成,例如搜索、监视、巡航等。通过分布式模型预测控制,无人机之间可以根据彼此的状态和环境信息进行即时决策,并通过协同控制算法实现一致的行动。

基于分布式模型预测控制的多固定翼无人机的共识控制研究旨在提高无人机系统的自主性和协同性,为无人机应用提供更灵活、高效和安全的解决方案。

一、研究背景与意义

基于分布式模型预测控制(DMPC)的多固定翼无人机共识控制研究,旨在实现多架无人机之间的协同飞行任务。这种研究对于无人机技术的发展和应用具有重要意义,可以应用于军事、民用以及商业领域,例如无人机的集群搜索、灾害救援、智能农业等方面。通过共识控制,多固定翼无人机可以实现任务的协同完成,如搜索、监视、巡航等,从而提高整个系统的性能和效率。

二、关键概念与技术

  1. 分布式模型预测控制(DMPC):一种控制方法,利用多个本地模型和决策器,在保持系统稳定的同时优化全局性能。它利用预测模型对系统的未来行为进行预测,并优化控制策略,以最小化预定的目标函数。与集中式控制方法不同,DMPC不依赖于全局信息,因此具有较强的分布式特性。
  2. 多固定翼无人机系统:指由多个固定翼无人机组成的系统,这些无人机可能需要在空中协同执行各种任务,例如巡航、搜索与救援、监测等。
  3. 共识控制:使得多个无人机在执行任务时能够达成一致的行动计划和决策,从而实现集群行为的一种控制策略。它通常通过设计合适的邻居关系和通信规则来实现。
  4. 分布式算法:用于实现多个无人机之间通信和决策交换的算法,通常需要考虑通信带宽、延迟等因素。

三、系统建模与仿真

  1. 系统建模:每个无人机建立自身的动态模型,通常包括动力学模型、传感器测量模型以及相互间的通信模型。
  2. 协同决策:通过网络通信,共享状态信息和模型预测,使得无人机可以预测其他无人机的行为。
  3. 预测控制:每个无人机使用模型预测控制技术,基于未来一段时间内的系统状态变化预测控制输入,以达成整体任务的最优性能。
  4. 共识协议:利用分布式算法(如平均值法或leader-following策略)保证各无人机的位置、速度等状态达到一致,实现群体行为的同步。
  5. 在线优化:在有限的时间窗口内,通过求解优化问题(比如最小化位置误差、能量消耗等),实时调整控制策略。

四、研究方法与过程

  1. 数据采集:每个无人机获取自身状态信息以及邻机的状态估计。
  2. 状态预估:根据模型预测未来的状态序列,考虑到其他无人机的响应。
  3. 优化决策:分布式计算资源协作求解优化问题,得到下一时刻的控制输入。
  4. 通信与更新:无人机间交换必要的信息,调整控制策略并实施。
  5. 执行与反馈:将收到的控制指令执行,监控实际效果,并根据新的观测数据更新模型。
  6. 迭代过程:不断重复以上步骤,直到达到期望的任务完成状态或达到预定的时间限制。

五、研究结果与应用

研究结果表明,基于DMPC的多个固定翼无人机共识控制方法能够有效地保证多个无人机在动态环境中的协同作战,并且具有较强的鲁棒性和适应性。通过Matlab仿真验证了该方法的有效性,多个无人机能够在执行任务时保持稳定的队形,并快速响应外部扰动。这种方法可以应用于多种无人机协同任务中,提高任务的执行效率和安全性。

📚2 运行结果

运行视频:

链接:https://pan.baidu.com/s/1UY0dhnT-LT6Osqc2l_LX4Q 
提取码:5r2w 
--来自百度网盘超级会员V4的分享

部分代码:

close all;clear;
addpath 'data'
addpath 'uavA1'
% addpath 'uavShow'

%----------------
uavW = 1;

save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 1;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])

save('x1.mat','x1','path1','waypoints1');
%----------------
clear;
uavW = 2;
uavi = uavW;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 2;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x2.mat','x2','path2','waypoints2');
%----------------
clear;
uavW = 3;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 3;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x3.mat','x3','path3','waypoints3');
%----------------
clear;
uavW = 4;

save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 4;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x4.mat','x4','path4','waypoints4');
%----------------
clear;
uavW = 5;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 5;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x5.mat','x5','path5','waypoints5');
%----------------

close all;clear;
addpath 'data'
addpath 'uavA1'
% addpath 'uavShow'

%----------------
uavW = 1;

save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 1;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])

save('x1.mat','x1','path1','waypoints1');
%----------------
clear;
uavW = 2;
uavi = uavW;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 2;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x2.mat','x2','path2','waypoints2');
%----------------
clear;
uavW = 3;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 3;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x3.mat','x3','path3','waypoints3');
%----------------
clear;
uavW = 4;

save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 4;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x4.mat','x4','path4','waypoints4');
%----------------
clear;
uavW = 5;
save('uavW.mat','uavW');
sim('New_mavsim_chap12');

ii = 5;
eval(['x' num2str(ii) '= x;'])
eval(['path' num2str(ii) '= path;'])
eval(['waypoints' num2str(ii) '= waypoints;'])
save('x5.mat','x5','path5','waypoints5');
%----------------

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]章豪,傅鸣毅,龚瑞,et al.基于分布式模型预测控制的多无人机协同规避控制技术[J].南京航空航天大学学报, 2017(S1):7.DOI:CNKI:SUN:NJHK.0.2017-S1-017.

[2]章豪,傅鸣毅,龚瑞.基于分布式模型预测控制的多无人机协同规避控制技术[C]//2017年(第三届)中国航空科学技术大会.0[2023-10-27].

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值