曲线表面公式:
∫ α β 2 π y 1 + y ′ 2 d x \int_{\alpha}^{\beta} 2 \pi y \sqrt[2]{1+y'} dx ∫αβ2πy21+y′dx
本公式描述了y=y(x)跟x轴之间围成的图形的表面积
y=y(x)绕x轴的体积公式:
∫
a
b
π
y
2
d
x
\int_{a}^{b} \pi y ^2 dx
∫abπy2dx
y=y(x)绕y轴的体积公式:
∫ a b π x 2 d y \int_{a}^{b} \pi x ^2 dy ∫abπx2dy
或者:
∫ a b 2 π x y d x \int_{a}^{b}2 \pi x y dx ∫ab2πxydx