Multi-GPU Training多GPU训练(Yolo系列)

单 GPU

python train.py  --batch 64 --data coco.yaml --weights yolov5s.pt --device 0
python train.py  --batch 64 --data coco.yaml --weights yolov5s.pt --device 0,1
python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --weights yolov5s.pt --device 0,1

使用特定 GPU

通过简单地传递后跟您的特定 GPU 来做到这一点。例如,在下面的代码中,我们将使用 GPU .--device2,3

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --cfg yolov5s.yaml --weights '' --device 2,3

### 实现YOLO模型的GPU训练 为了在AutoDL平台上实现YOLO模型的GPU训练,可以遵循以下配置和操作指南: #### 配置环境 确保安装了必要的依赖库以及框架版本兼容。对于YOLOv5来说,推荐使用Python 3.8及以上版本,并且PyTorch应为1.7以上版本[^1]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt ``` #### 设置分布式数据并行(DDP) 利用PyTorch内置的支持来启动个进程,在不同设备上执行相同的程序副本。这可以通过`torch.distributed.launch`模块完成[^2]。 ```python import torch.multiprocessing as mp from pathlib import Path from utils.general import check_img_size, increment_path from models.experimental import attempt_load from train import parse_opt, main def run(opt): world_size = opt.world_size or torch.cuda.device_count() if not isinstance(world_size, int) or world_size <= 0: raise ValueError('world size must be a positive integer') # Start DDP training. mp.spawn(main, args=(opt,), nprocs=world_size) if __name__ == '__main__': opt = parse_opt() run(opt) ``` 上述脚本中的`mp.spawn()`函数会创建指定数量的工作线程,每个工作线程都会调用传入的方法(`main`)作为入口点。这里假设已经定义了一个名为`parse_opt()`的功能用于解析命令行参数,并传递给实际负责训练逻辑的`main()`函数处理[^3]。 #### 提交作业至AutoDL集群 编写Shell脚本来提交任务到AutoDL平台,设置合适的资源请求参数如CPU核心数、内存大小及GPU型号等信息。注意调整batch-size以适应可用硬件资源的数量与能力。 ```shell #!/bin/bash #SBATCH --job-name=yolo_train # Job name #SBATCH --output=/path/to/output.log # Output file path (%j expands to jobID) #SBATCH --error=/path/to/error.log # Error log file path #SBATCH --ntasks=1 # Number of tasks (processes) #SBATCH --cpus-per-task=4 # CPU cores per task #SBATCH --gres=gpu:v100:4 # Request GPUs (type and count) #SBATCH --mem=64G # Memory limit in MBs #SBATCH --time=24:00:00 # Time limit hrs:min:sec module load python/3.9 cuda/11.3 cudnn/8.2 source /env/path/bin/activate # Activate conda environment if needed. # Run the Python script with multi-GPU support using PyTorch's distributed launch utility. python -m torch.distributed.run \ --nproc_per_node=$SLURM_GPUS_ON_NODE \ train.py --img 640 --batch-size 32 --epochs 50 --data coco.yaml --weights yolov5s.pt ``` 此批处理文件设置了四个V100 GPU来进行YOLO v5的小规模预训练权重微调实验。通过修改相应的超参选项可适配其他具体应用场景下的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fankeYang️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值