线性方程组:
非齐次线性方程组、齐次线性方程组(称为非齐次线性方程组的导出组)
n个未知数、m个方程
多种表示方法:
非齐次线性方程组
1、全部展开写成方程组
2、矩阵乘法
3、矩阵形式
4、向量形式
解方程组:求出方程组所有的解。
求方程组的解:对方程组做同解变形(对应矩阵的初等行变换)
齐次线性方程组 详见P241
也可写作矩阵形式:Ax=O
1)零解(0,0,…,0)T 齐次线性方程组的一个必然存在的解
2)非零解 如果齐次方程组还有其他的解
基础解系:
Ax=O的一个基础解系:η1,η2,…,ηt (实质:方程组的解集的极大线性无关组)
η1,η2,…,ηt都是齐次线性方程组的Ax=0的解,且满足
(1)η1,η2,…,ηt线性无关 (2)方程组Ax=O的任意一个解都可以由η1,η2,…,ηt线性表出。
齐次方程组的通解由基础解系线性组合得:k1η1+k2η2+…+ktηt,k1,k2,…,kt是任意常数
解的性质:齐次多个特解线性组合后,仍为齐次的特解
若η1,η2,…,ηt是方程组Ax=O的解(不一定构成基础解系),则线性组合k1η1+k2η2+…+ktηt 仍是方程组Ax=O的解。
★齐次方程组何时有非零解?↔ r(A)<n (秩小于列数)
推论
1、m<n时(行数小于列数时),齐次方程组必有非零解
2、特别的,当A是方阵时(m=n时),|A|=0↔ 齐次方程组有非零解
基础解系中解向量的个数:
★若齐次方程组系数矩阵的秩r(A)=r<n,则齐次方程组有 n-r 个线性无关的解 / 齐次方程组的基础解系有n-r 个解向量。
★齐次方程组何时只有零解?↔ r(A)=n (秩等于列数)
特别的,当A是方阵时(m=n时),|A|≠0↔ 齐次方程组只有零解
r(A)=n 秩等于列数→ 该(列)向量组A=(α1,α2,…,αn)线性无关。要让这些(列)向量 组合出一个零(列)向量,唯一的办法是使k1=k2=…=kn=0,即齐次方程组只有唯一的解向量(0,0,…,0)T,
只有零解。
常考题型:给定齐次方程组,求基础解系和通解。
步骤
1、对系数矩阵A作初等行变换,化为行最简矩阵。
2、得到同解方程组,给 n-r 个自由变量赋值(例如n-r=3,令3个自由变量分别为t、u、v)
3、代入同解方程组,解出通解,同时得到基础解系。
将矩阵化成行最简矩阵的技巧:初等行变换
首先使第一行第一列的元素为1 (通过行之间互换、倍加、倍乘)
通过行之间的倍加,把第一列除了第一个元素之外,都化为0
把第二行第二列的元素化为1
再次通过行之间的倍加,将第二列除了第二个元素之外,都化为0
非齐次线性方程组 详见P244
也可写作矩阵形式:Ax=b
解的性质:
(1) 两个非齐次的解之差为齐次的解;
(2) 非齐次的一个解加上齐次的一个解的任意k倍,仍为非齐次的解;
解的结构:
非齐次的通解 =非齐次的一个特解+齐次的通解
★非齐次何时有解?↔ 系数矩阵的秩=增广矩阵的秩 r(A)=r(Ā) ↔ b可由A的列向量α1,α2,…,αn 线性表出
非齐次有解还可再分两种情况:(1)有无穷多解↔ r(A)=r(Ā)<n (2)有唯一解↔ r(A)=r(Ā)= n
★非齐次何时无解?↔系数矩阵的秩+1=增广矩阵的秩 r(A)+1=r(Ā)
常考题型:给定非齐次方程组,解方程组。
步骤
1、对增广矩阵Ā 作初等行变换,化为行最简矩阵。
2、得到同解方程组,给 n-r(A) 个自由变量赋值(例如n-r=3,令3个自由变量分别为t、u、v)
3、代入同解方程组,直接解出非齐次通解(非齐次的一个特解+齐次的通解)。
补充:快速求得非齐次的一个特解的方法:
1、对增广矩阵Ā 作初等行变换,化为行最简矩阵。
2、得到同解方程组,给 n-r(A) 个自由变量全都赋值为0,即可得到一个非齐次的特解。
★在行最简矩阵中,形如(1,0,0)^T、(0,1,0)^T、(0,0,1)^T的列对应的未知数xi称为约束变量,剩余n-r(A) 个列对应的未知数xi称为自由向量。
方程组的应用 详见P248
题型1:换汤不换药,本质还是求齐次/非齐次方程组的通解。
步骤
1、根据题意假设所求矩阵的形状(用x1、x2、x3、x4…代替矩阵的元素)
2、根据题意列出齐次/非齐次方程组,求出通解X=(x1、x2、x3、x4…)^T
3、变形可得所求矩阵。
题型2:给定带参数的多个列向量α1、α2、α3…,告知线性相关,求出参数。
列向量组线性相关↔ 齐次方程组有非零解(由列向量组成系数矩阵A)↔ r(A)<n (秩小于列数)
1、m<n时(行数小于列数时),齐次方程组必有非零解↔ 向量组线性相关
2、特别的,当A是方阵时(m=n时),若系数行列式|A|=0↔ 齐次方程组有非零解↔ 向量组线性相关