全面解读19种RAG架构

近年来,随着人工智能技术的不断发展,信息检索与生成模型逐步融合,检索增强生成(RAG)架构成为了提升语言模型性能的重要方向。RAG 通过结合检索技术与生成模型,使模型能够从外部数据源中获取更多背景信息,并以此为基础生成更为准确、上下文相关的内容。本文将详细介绍RAG的不同架构。

1、Standard RAG,标准RAG


标准RAG架构是RAG技术的基础版本,它将检索与生成结合起来,通过外部数据源增强语言模型的生成能力。在此架构下,系统会根据输入查询,从外部文档中检索相关信息,并将其与语言模型的生成能力结合,从而生成更符合上下文的回答,并且支持实时信息检索,能够在几秒内生成高质量的响应。

2、Corrective RAG,纠错型RAG


纠错型RAG旨在通过反馈机制不断改进生成结果。模型生成的初始内容会经过反馈循环进行调整,以确保最终输出的准确性,特别适用于需要高准确度的领域。

3、Speculative RAG,推测型RAG


推测型RAG通过并行生成多个草稿并采用验证模型,提升生成效率和质量,提高了生成速度并保持较高的准确性,特别适用于需要快速生成内容的应用场景。

4、Fusion RAG,融合型RAG


融合型RAG利用多个检索源同时提供信息,生成更全面的回答。它能够根据用户查询动态调整检索策略,减少对单一数据源的依赖,提供多源检索,增加生成结果的多样性与完整性。

5、Agentic RAG,智能代理型RAG


智能代理型RAG通过集成动态代理进行实时调整,能够自动适应用户的需求和上下文变化。该模型设计为模块化结构,允许整合新的数据源和功能,能够高效并行处理复杂任务,适合复杂多任务的场景。

6、Self RAG,自增强型RAG


自增强型RAG利用先前生成的内容作为下一轮检索的基础,不断提升生成的上下文一致性与准确性。在多轮对话和长时间任务中,保持一致的上下文参考。

7、Graph RAG,图谱RAG


在图谱RAG中,模型通过动态构建知识图谱(Knowledge Graph),链接相关实体以提升检索的效率和准确度。能够根据查询构建紧凑的知识图,避免检索冗余,提升复杂任务的处理能力。

8、Adaptive RAG


Adaptive RAG 动态决定何时检索外部知识,平衡内部和外部知识的使用。它利用语言模型内部状态的置信度评分来判断是否需要进行检索,并通过“诚实探针”防止幻觉现象,使输出与实际知识保持一致。该方法减少了不必要的检索,提升了效率和响应的准确性。

9、REALM: Retrieval augmented language model pre-training


REALM(检索增强语言模型预训练)通过从大型语料库(如维基百科)中检索相关文档来提升模型预测能力。其检索器通过掩码语言模型(MLM)进行训练,优化检索以提高预测准确性。在训练中,它使用最大内积搜索(Maximum Inner Product Search)高效地从数百万候选文档中找到相关内容。通过整合外部知识,REALM 在开放领域问答任务中表现优于以往模型。

10、RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval


RAPTOR 通过递归聚类和总结文本构建层次化的树结构,支持在不同抽象层次上的检索,结合广泛主题和具体细节。它在复杂问答任务中表现优于传统方法,提供树遍历和折叠树方法,以实现高效的信息检索。

11、REFEED: Retrieval Feedback


REFEED 通过检索反馈来优化模型输出,而无需微调。它通过检索相关文档改进初始答案,并基于新信息调整生成结果。REFEED 还生成多个答案来提高检索的准确性,并结合检索前后的结果,使用排序系统增强答案的可靠性。

12、Iterative RAG,迭代RAG


迭代RAG通过多次检索步骤,根据先前检索到的文档反馈不断优化结果。检索决策遵循马尔可夫决策过程,强化学习用于提升检索性能。模型保持内部状态,基于累积的知识调整后续检索步骤,从而逐步提高检索准确性。

13、REVEAL: Retrieval-Augmented Visual-Language Model


REVEAL 是一种结合了推理、任务特定动作和外部知识的视觉-语言增强模型。这种方法通过依赖现实世界的事实减少错误和虚假信息,使推理更为准确。它生成清晰、类似人类的任务解决步骤,提升了透明度。REVEAL 在任务中表现优异,使用较少的训练数据即可实现高效和适应性强的表现,且具备灵活的互动调整能力,使模型在实际应用中更具可控性和响应性。

14、REACT: Retrieval-Enhanced Action generation


REACT 是一种结合推理与行动的技术,模型从环境中接收观察信息后,基于过去的行动和思考更新其上下文,以保持对情境的理解。模型会生成引导下一步行动的思路,确保决策逻辑清晰并与任务保持一致。执行行动后,新的反馈会进一步优化模型的理解。这种推理与行动的结合减少了错误,能够适应实时变化,并提供更加透明、可靠的决策。

15、REPLUG: Retrieval Plugin


REPLUG 通过检索外部相关文档来增强大型语言模型(LLMs)的预测能力。它将语言模型视为一个固定的“黑箱”,并在输入之前附加检索到的信息。这种灵活的设计可以无缝应用于现有模型,无需对其进行修改。通过整合外部知识,REPLUG 减少了幻觉等错误,并扩展了模型对小众信息的理解。检索组件还可以根据语言模型的反馈进行微调,进一步提高与模型需求的对齐程度。

16、MEMO RAG: Memory-Augmented RAG


MEMO RAG 结合了记忆和检索功能来处理复杂查询。记忆模型首先生成初步答案,用于引导外部信息的检索。然后,检索器从数据库中收集相关数据,交由更强大的语言模型生成全面的最终答案。该方法帮助 MEMO RAG 处理模糊查询,并高效处理各类任务中的大量信息。

17、ATLAS: Attention-based retrieval Augmented Sequence generation


ATLAS 是一种基于注意力的检索增强序列生成模型,通过检索外部文档来提高语言模型在问答等任务中的准确性。它使用双编码器检索器在大型文本库中查找最相关的文档,并通过“Fusion-in-Decoder”模型整合查询和文档数据,生成最终答案。ATLAS 依赖动态文档检索,而非记忆大量信息,减少了参数数量。文档索引可以在不重新训练模型的情况下更新,适合处理知识密集型任务。

18、RETRO: Retrieval-Enhanced Transformer


RETRO 是一种检索增强型Transformer,它将输入文本分割为较小的片段,并从大型数据库中检索相关信息。通过预训练的BERT嵌入,它从外部数据中提取相似片段来丰富上下文,并通过分块交叉注意力机制整合这些片段,从而提升预测精度而不显著增加模型规模。此方法更高效地利用外部知识,特别适用于问答和文本生成任务,同时避免了大模型的高计算成本,能更好地处理海量信息。

19、LightRAG: Simple and Fast Retrieval-Augmented Generation


LightRAG 是一个简单快速的检索增强生成(RAG)系统,适用于多种自然语言处理任务,支持OpenAI和Hugging Face语言模型,并提供多种检索模式(naive、local、global、hybrid)。与传统RAG系统不同,LightRAG 结合了知识图谱,通过图结构表示实体及其关系,增强了上下文感知能力。这种双层检索系统不仅擅长获取详细信息,还能处理复杂的多跳知识,从而解决了现有RAG系统依赖扁平数据结构、导致答案碎片化的问题,提供了更深度的、满足用户需求的响应。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### Graph RAG 架构介绍 Graph RAG (Retrieval-Augmented Generation) 是一种结合了检索增强生成模型与图结构数据的方法,在处理查询聚焦摘要等任务时表现出色[^1]。该方法通过引入图结构来改进传统的RAG模型,从而更好地捕捉文档内部以及跨文档的信息关联。 #### 图结构融入机制 在Graph RAG中,为了提升信息抽取的质量并增加上下文理解能力,采用了基于图的数据表示形式。具体来说: - **节点定义**:每个文档片段(chunk)被视作图中的一个节点。 - **边创建原则**:根据语义相似度或其他逻辑关系建立节点间的连接,形成复杂的网络拓扑结构。 这种设计使得模型能够更有效地利用全局视角下的知识分布特征来进行推理和预测。 ```python import networkx as nx def build_graph(chunks): G = nx.Graph() # Add nodes from chunks for chunk_id, content in enumerate(chunks): G.add_node(chunk_id, text=content) # Create edges based on semantic similarity or other criteria for i in range(len(chunks)): for j in range(i + 1, len(chunks)): if should_connect(chunks[i], chunks[j]): G.add_edge(i, j) return G ``` #### 实现方式概述 实现Graph RAG的关键在于如何高效地构建上述提到的图结构,并将其应用于实际的任务流程当中。以下是几个重要的技术要点: - **预训练语言模型的选择**:选用适合特定应用场景的强大编码器作为基础组件,比如BERT、RoBERTa等。 - **索引库搭建**:针对大规模文本集合建立起快速检索所需的向量存储系统,如Faiss或Annoy,以便于后续阶段获取最相关的候选集。 - **融合策略制定**:当获得多个可能的答案路径后,需采用合理的算法决定最终输出的内容组合模式,确保既保留广泛覆盖又不失精准表达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值