近年来,随着人工智能技术的不断发展,信息检索与生成模型逐步融合,检索增强生成(RAG)架构成为了提升语言模型性能的重要方向。RAG 通过结合检索技术与生成模型,使模型能够从外部数据源中获取更多背景信息,并以此为基础生成更为准确、上下文相关的内容。本文将详细介绍RAG的不同架构。
1、Standard RAG,标准RAG
标准RAG架构是RAG技术的基础版本,它将检索与生成结合起来,通过外部数据源增强语言模型的生成能力。在此架构下,系统会根据输入查询,从外部文档中检索相关信息,并将其与语言模型的生成能力结合,从而生成更符合上下文的回答,并且支持实时信息检索,能够在几秒内生成高质量的响应。
2、Corrective RAG,纠错型RAG
纠错型RAG旨在通过反馈机制不断改进生成结果。模型生成的初始内容会经过反馈循环进行调整,以确保最终输出的准确性,特别适用于需要高准确度的领域。
3、Speculative RAG,推测型RAG
推测型RAG通过并行生成多个草稿并采用验证模型,提升生成效率和质量,提高了生成速度并保持较高的准确性,特别适用于需要快速生成内容的应用场景。
4、Fusion RAG,融合型RAG
融合型RAG利用多个检索源同时提供信息,生成更全面的回答。它能够根据用户查询动态调整检索策略,减少对单一数据源的依赖,提供多源检索,增加生成结果的多样性与完整性。
5、Agentic RAG,智能代理型RAG
智能代理型RAG通过集成动态代理进行实时调整,能够自动适应用户的需求和上下文变化。该模型设计为模块化结构,允许整合新的数据源和功能,能够高效并行处理复杂任务,适合复杂多任务的场景。
6、Self RAG,自增强型RAG
自增强型RAG利用先前生成的内容作为下一轮检索的基础,不断提升生成的上下文一致性与准确性。在多轮对话和长时间任务中,保持一致的上下文参考。
7、Graph RAG,图谱RAG
在图谱RAG中,模型通过动态构建知识图谱(Knowledge Graph),链接相关实体以提升检索的效率和准确度。能够根据查询构建紧凑的知识图,避免检索冗余,提升复杂任务的处理能力。
8、Adaptive RAG
Adaptive RAG 动态决定何时检索外部知识,平衡内部和外部知识的使用。它利用语言模型内部状态的置信度评分来判断是否需要进行检索,并通过“诚实探针”防止幻觉现象,使输出与实际知识保持一致。该方法减少了不必要的检索,提升了效率和响应的准确性。
9、REALM: Retrieval augmented language model pre-training
REALM(检索增强语言模型预训练)通过从大型语料库(如维基百科)中检索相关文档来提升模型预测能力。其检索器通过掩码语言模型(MLM)进行训练,优化检索以提高预测准确性。在训练中,它使用最大内积搜索(Maximum Inner Product Search)高效地从数百万候选文档中找到相关内容。通过整合外部知识,REALM 在开放领域问答任务中表现优于以往模型。
10、RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
RAPTOR 通过递归聚类和总结文本构建层次化的树结构,支持在不同抽象层次上的检索,结合广泛主题和具体细节。它在复杂问答任务中表现优于传统方法,提供树遍历和折叠树方法,以实现高效的信息检索。
11、REFEED: Retrieval Feedback
REFEED 通过检索反馈来优化模型输出,而无需微调。它通过检索相关文档改进初始答案,并基于新信息调整生成结果。REFEED 还生成多个答案来提高检索的准确性,并结合检索前后的结果,使用排序系统增强答案的可靠性。
12、Iterative RAG,迭代RAG
迭代RAG通过多次检索步骤,根据先前检索到的文档反馈不断优化结果。检索决策遵循马尔可夫决策过程,强化学习用于提升检索性能。模型保持内部状态,基于累积的知识调整后续检索步骤,从而逐步提高检索准确性。
13、REVEAL: Retrieval-Augmented Visual-Language Model
REVEAL 是一种结合了推理、任务特定动作和外部知识的视觉-语言增强模型。这种方法通过依赖现实世界的事实减少错误和虚假信息,使推理更为准确。它生成清晰、类似人类的任务解决步骤,提升了透明度。REVEAL 在任务中表现优异,使用较少的训练数据即可实现高效和适应性强的表现,且具备灵活的互动调整能力,使模型在实际应用中更具可控性和响应性。
14、REACT: Retrieval-Enhanced Action generation
REACT 是一种结合推理与行动的技术,模型从环境中接收观察信息后,基于过去的行动和思考更新其上下文,以保持对情境的理解。模型会生成引导下一步行动的思路,确保决策逻辑清晰并与任务保持一致。执行行动后,新的反馈会进一步优化模型的理解。这种推理与行动的结合减少了错误,能够适应实时变化,并提供更加透明、可靠的决策。
15、REPLUG: Retrieval Plugin
REPLUG 通过检索外部相关文档来增强大型语言模型(LLMs)的预测能力。它将语言模型视为一个固定的“黑箱”,并在输入之前附加检索到的信息。这种灵活的设计可以无缝应用于现有模型,无需对其进行修改。通过整合外部知识,REPLUG 减少了幻觉等错误,并扩展了模型对小众信息的理解。检索组件还可以根据语言模型的反馈进行微调,进一步提高与模型需求的对齐程度。
16、MEMO RAG: Memory-Augmented RAG
MEMO RAG 结合了记忆和检索功能来处理复杂查询。记忆模型首先生成初步答案,用于引导外部信息的检索。然后,检索器从数据库中收集相关数据,交由更强大的语言模型生成全面的最终答案。该方法帮助 MEMO RAG 处理模糊查询,并高效处理各类任务中的大量信息。
17、ATLAS: Attention-based retrieval Augmented Sequence generation
ATLAS 是一种基于注意力的检索增强序列生成模型,通过检索外部文档来提高语言模型在问答等任务中的准确性。它使用双编码器检索器在大型文本库中查找最相关的文档,并通过“Fusion-in-Decoder”模型整合查询和文档数据,生成最终答案。ATLAS 依赖动态文档检索,而非记忆大量信息,减少了参数数量。文档索引可以在不重新训练模型的情况下更新,适合处理知识密集型任务。
18、RETRO: Retrieval-Enhanced Transformer
RETRO 是一种检索增强型Transformer,它将输入文本分割为较小的片段,并从大型数据库中检索相关信息。通过预训练的BERT嵌入,它从外部数据中提取相似片段来丰富上下文,并通过分块交叉注意力机制整合这些片段,从而提升预测精度而不显著增加模型规模。此方法更高效地利用外部知识,特别适用于问答和文本生成任务,同时避免了大模型的高计算成本,能更好地处理海量信息。
19、LightRAG: Simple and Fast Retrieval-Augmented Generation
LightRAG 是一个简单快速的检索增强生成(RAG)系统,适用于多种自然语言处理任务,支持OpenAI和Hugging Face语言模型,并提供多种检索模式(naive、local、global、hybrid)。与传统RAG系统不同,LightRAG 结合了知识图谱,通过图结构表示实体及其关系,增强了上下文感知能力。这种双层检索系统不仅擅长获取详细信息,还能处理复杂的多跳知识,从而解决了现有RAG系统依赖扁平数据结构、导致答案碎片化的问题,提供了更深度的、满足用户需求的响应。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓