大模型|2025人才市场洞察与薪酬指南

继续ChatGPT开启语言大模型引领的新一轮AI革命以来,世界各地知名大企公司推出了技术创新和大模型产品,标志着大模型技术的成熟和大规模应用的开始,世界俨然走进了AI时代。

图|网易

01 行业趋势

进入2024年以来,大模型领域呈现出如下发展趋势:

**一是算力底座:**迈向10万卡集群量变,速度和效率双提升。

**二是推理分析:**LLM带来推理能力跃迁,开启“智力即服务”。

**三是创意生成:**AIGC应用爆发,降低专业创作门槛。

**四是情绪感知:**LLM赋予机器情感价值,打开人机陪伴市场。

**五是智能制造:**大模型提升工业新质生产力。

**六是游戏环境:**大模型与游戏共生,打造Agent最佳训练场。

**七是移动革命:**端侧模型优化带来应用入口变革。

**八是具身智能:**人型机器人与大模型共同进化,为外脑提供“躯体”。

**九是开源共享:**开源生态实现降本普惠,推进”外脑“共享和迭代。

**十是人机对齐:**人机对齐是大模型产品的重要竞争力,也关乎通用人工智能的未来。

图|网易

02 人才市场

2024年1-7月份,大模型行业人才市场整体呈现稳中有升的态势,既有供不应求,也有人才饱和的情况,主要表现如下:

一是人才需求方面。

大模型领域人才需求整体上持续增长,但也有供大于求、人才饱和的情况,部分核心关键的技术研发人才仍然供不应求。

二是岗位紧缺方面。

招聘企业仅在云计算、音视频算法、大模型算法等高技术/研发岗位处于紧缺状态,主要包括:

大模型算法工程师、AIGC算法工程师、语言算法工程师、广告算法工程师、反欺诈-风控算法工程师、搜索算法工程师、产品经理、产品架构师、JAVA工程师、后端开发工程师、人工智能工程师、推荐算法工程师、C++工程师、云计算工程师、图像识别/计算机视觉工程师、自然语言处理工程师、机器人算法工程师、智能驾驶系统工程师、导航算法工程师、数据研究员、数据架构师、深度学习工程师、数据分析师、数字前端工程师等。

三是跳槽薪酬方面。

2024年1-7月份,大模型领域新发岗位平均年薪约为60万元。

与过去几年大模型领域人才跳槽动辄涨薪2-3倍相比,2024年度大模型领域跳槽薪酬涨幅相对理性,整体涨幅多在30-50%。

四是人才集中度方面。

大模型领域的人才集中度非常高,主要集中在一线城市,其中北京占比为32.19%、上海为16.85%和深圳为10.07%。

五是应用领域方面。

大模型岗位需求和招聘企业主要在纯互联网、电子商务、新零售、新生活服务、新金融科技、游戏、企业数字化服务、通信、新能源汽车等新兴经济产业领域。

六是人才画像方面。

随着大模型领域人才薪酬整体提高,相应地招聘企业对领域的人才要求也是水涨船高:

如学历要求以硕士和博士为主,工作年限需要3-5年且以年轻人为主,需要具备编程语言、机器学习框架、神经网络等专业技能和知识。

七是人才流动性方面。

大模型领域人才表现出对该领域的技术所吸引和对前景保持乐观,人才多为主动加入,跳槽的积极主动性比其他领域更高。

人才主要在高科技企业、互联网、通信、人工智能领域企业之间流动。

图|网易

03 薪酬洞察

根据2024年1-7月人才市场的相关数据,大模型行业相关核心关键职位/岗位跳槽薪酬仍有高涨幅且处于稳中有升的态势,具体如下图:

备注:以上核心职位/岗位的年薪以一线城市为参考,K=千元人民币,M=百万元人民币。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

高科技 AIoT 互联网进入了以产业互联网为代表的互联网下半场,各大公司将关注点转移到公 司利润获取以及行业融合。2019年5G进入商用化的阶段,5G和AIoT迎来历史性 的交汇,促进了AIoT应用落地。在“资本寒冬”和经济增速放缓的大环境下,作为 国家政策大力支持、资本市场重点投入的AIoT领域得到快速发展。AIoT自身作为 庞大的产业链,为技术本身缔造出庞大的“蓄水池”,保证技术发展下限。不同类 型的公司纷纷入局AIoT,包括小米的All in AIoT,阿里和华为在AIoT领域的日趋 完善,而在垂直细分领域也产生了如涂鸦智能、特斯联等新兴热门公司。可以预 见AIoT将成为未来几年内持续热点,预估将拥有万亿规模的市场体量。 AIoT拥有广阔的市场,且在不同赛道形成垂直分布的态势。在智能安防、智能家 居、智慧社区、智能驾驶等领域形成了千亿级细分市场。从人才需求看,技术领 域的人才最为旺盛,其中包括了AI、数据、云计算平台以及芯片等核心技术方 向。无论AI+的技术找场景还是+AI的场景找技术,已经是在AI的基础算法、算力 突破同等重要使命,而AI+产业+场景+数据,是未来AI作为效率工具各行各业 深度结合的方式。 岗位上,以平台架构为主的人才以及拥有AI落地能力的人才将会呈现巨大的需求 空间,芯片类的人才也广受各大公司青睐。AIoT拥有广阔的空间,暂时不存在职 位饱和情况。但是由于AIoT具备较强的新一代技术以及底层技术实体经济深度 融合的特性,偏向于理论研究以及纯算法相关的职位需求较少。 行业的公司分布不同于早期互联网等热门行业,没有呈现北京、上海、深圳等一 线城市高度集中的态势,而是在国家政策以及地方政府拉动经济的政策影响下, 在全国范围内分布均匀,在长三角、珠三角以及内陆城市均有分布。 人才缺口: AIoT架构师、边缘计算专家、异构计算 人才来源:AIoT所需要的人工智能、云计算、数据、物联网等人才多分布于一线 城市,人才异地获取较为普遍 数字化转型 目前,整体经济增长增速在放缓,市场的竞争愈加激烈,用户的需求更加走向个 性化,向用户提供个性化的产品和服务的需求越来越迫切。来自第三方的数据显 示,到2020年,全球数字化转型相关的行业增加值将达到18万亿美元,在全球有 46%的企业将促进数字业务发展作为未来一年内的首要业务优先级,而在中国, 这个比例数值是69%。无论从全球范围还是从国内市场来看,数字化转型已经势 不可挡。 数字化人才主要分布在互联网、信息通信等ICT基础产业,传统行业包括医疗、 制造、金融、消费品等也具备良好的人才基础。从人才分布来看,计算机科学、 软件工程、电气和电子工程等技术类学科,工商管理专业也逐渐成为数字人才的 一大来源。北京、上海、深圳、广州和杭州是推动中国经济数字化转型的“引领 型”城市,在数字人才方面具有很大优势,其中北京和杭州在大数据分析领域人才 优势显著,上海和广州在先进制造和数字化运营领域更具优势,深圳人才结构比 较均衡、各职能领域齐头并进。 人才缺口:运营管理、信息技术、数据科学、云计算 人才来源:一二线互联网公司、乙方数据公司 云计算 在国家政策引导和数字化转型浪潮的助推下,各行各业均开启“上云”之路。随着 企业上云比例和应用深度的显著提升,BAT、华为、浪潮等企业纷纷加码To B业 务,布局云计算市场。据赛迪顾问预计,未来云计算市场规模仍将保持20%以上 的增长速度,尤其是广大的中小企业,利用云计算服务,借助云技术快速实现业 务和管理信息化,提升商业竞争力,且随着企业上云部署力度加大,云预算也会 随之增长。可见,云计算未来市场空间巨大。 随着云计算的发展,云计算的范畴也越来越广,人工智能开始成为重要组成部 分。随着公有云企业提供机器学习人工智能服务成为“趋势”,人工智能的优质 基础设施同样会大量普及,促进人工智能产业的发展。 从竞争格局来看,大型巨头互联网公司,主要针对政府大客户,采取总包的形式 来承包项目,再把项目分包给其他垂直领域小厂;垂直领域(大数据或存储等) 小厂则会发展为他们生态中的一员。各巨头正纷纷打造以“我”为主的云生态,强 化对云计算行业的掌控力。在云计算白热化的竞争态势下,中小厂商需要瞄准用 户精细化需求,提供行业云等差异化云服务,以获得竞争优势。 云计算行业热点需求更多的是在技术底层如云存储、自动化运维、安全等领域。 To B政府、大央企、金融等大B客户的企业服务重点领域是如智慧城市,SaaS服 务业务等。在A-E轮融资的云公司,更多是阶段型爆发式的销售需求。公有云市 场的产品多样化,使得销售的覆盖区域、职责等都有各自公司的差异化。整个行 业趋势呈现云+行业垂直化,当前活跃的几个行业有智慧零售、大政务(智慧城 市)、金融和医疗领域。 需求旺盛的岗位方向则包括如云运维(devOps)、云平台、云产品、云销售、云 售前、云市场。目前云技术还在不停的迭代和变化中,没有出现特别饱和的现象。 随着云计算市场的持续扩张,尤其是各巨头云计算业务高速增长,云计算提供商 需要建设更多数据中心以满足业务需求;容器技术应用的进一步普及;企业级 SaaS服务走向个性化定制化,带来相应的人才需求。随着信息技术的发展,企 业管理软件正朝着智能化方向发展,而企业的软件和网络高级设计人才尚未跟上 云计算技术的发展速度。云计算让互联网应用和企业应用的界限变得越来越模 糊。对于IT企业而言,未来懂得最新云计算技术的运营人才需求激增。在云管理 方面,未来企业的管理理念、方法、工具都要适应云计算时代的特征,因此导致 企业对既了解云计算技术,又懂云计算管理的复合型人才需求加大。当企业广泛 应用网络和管理软件成为其最基本的管理要求的时候,无论是IT企业还是传统企 业,对于能够应用云计算技术人才都会产生爆发式增长的需求。 17 | 高科技 人才缺口:数据中心、容器技术应用、企业级SaaS服务、网络设计、云运营、复 合型管理人才 人才来源:云计算厂商:如AWS、微软、阿里云、腾讯、华为云、金山云、 ucloud、七牛云等;To B领域传统厂商:如政务领域神州数码、太极计算机等公 司;工业领域:GE、西门子等公司;大中型互联网公司通用技术高端人选 芯片 在国家政策支持、技术和需求驱动的助推下,半导体行业迎来了发展和革新。随 着AI、IoT、5G、云计算技术的成熟,高精深技术作为基础技术元素体现出了新 时代特有的形态,即作为“硬”科技组团共同形成了新型基础设施。随着市场场景 的日渐丰富,芯片行业作为提升算力的核心元素,同各行各业形成了前所未有的 大融合。各类芯片公司如雨后春笋般呈现向上发展蓬勃的态势,以康佳、格力、 美的、格兰仕等为代表的传统家电行业纷纷投入巨资打造独立的芯片研发团队, 传统家电厂商以物联网以及智能家居为核心赛道,寻求技术突破来赋能产品。顶 级互联网巨头纷纷涉入芯片行业,打造其以云计算和AI双向融合下的生态环境。 工业行业积极进行工业互联网布局和数字化转型,如富士康工业互联网、东土科 技等公司也在积极布局芯片行业。地产厂商在寻求向城市运营商转型的过程中, 以划地为主、产业为辅积极布局产业园区,和高校进行密切配合,同时一些寻求 科技化住宅产品升级、产能提升、生态搭建的头部地产公司如金茂、碧桂园、恒 大以不同方式布局芯片领域。芯片行业同市场需求的粘合程度明显高于之前。在 AI、物联网、5G技术的催生下,人工智能芯片、CPU设计尤其是开源框架CPU core自主化研发、第三代半导体芯片产业链作为目前热点快速兴起。 半导体行业从候选人、公司、投资人都会跳出固定的半导体圈层在整个生态体系 下关注机会,技术落地、行业应用以及软硬一体化、定制化业务将被广泛关注,半 导体行业公司以及跨界进入半导体行业的公司都需要对赛道慎重考量。结合大趋 势,和智能家居、工业互联网、智慧城市/智慧社区关联的公司会获得更多青睐。 从人才需求来看,芯片设计、计算架构、第三代半导体材料人才需求旺盛。IC Design和verification人才作为芯片领域核心技术人才,在不同类型企业的芯片领 域都有较大的需求,主要的人才缺口在5-7年的核心技术骨干。由于该阶段人才产 生了明显的断层,该部分人才有较大的议价空间。在计算架构领域,拥有AI或者 CPU/GPU/DSP背景的人才市场上需求旺盛。以SoC为例,同时拥有SoC和 CPU/GPU/DSP相关经验的候选人的薪酬明显高于SoC背景人选,薪酬多分布在 行业七分位以上。FPGA曾经是传统硬件技能,但是拥有AI相关经验的人选薪酬 远高于传统FPGA从业人员。AI芯片公司,互联网科技公司跨界招聘、ADAS、 IoT、AI加速器等热门行业需求也不断在催生此类人才热度。不同于芯片设计门 类,此类职位需求方主要为顶级国内高科技公司、互联网巨头和新兴创业公司, 职位以领军人物以及高端管理为主。第三代半导体公司主要以CaN以及碳基类型 半导体材料公司为主,主要应用于5G功率芯片、汽车电子电力芯片、国防科技领 域,此领域未来将诞生更多优秀的公司,人才需求方向主要为前端工艺以及材料 器件领域人才。 高科技 | 18 具体岗位方向上,对于IC设计和验证核心技术骨干人才的需求将异常旺盛且持 续,FPGA、GPU、CPU架构以及软硬件一体化算法以及架构人才会成为各大公 司重点吸引的高精尖核心人才人才较为稀缺呈现供不应求的状态。第三代半导 体人才将成为后起之秀获得更多青睐。传统的封装测试、工业研发或将逐步呈现 饱和现象。 人才缺口:5-7年的IC设计和验证人才,以及拥有计算、AI等技能的IC复合型人才 人才来源:顶级外企芯片公司以及国内具有核心技术研发的高校和研究机构;同 时为了培养集成电路人才,国家已经将集成电路设置成为一级学科,各大公司以 及孵化器园区和高校正联合培养人才 大数据 随着云计算、移动互联网等新一代信息技术的应用普及,我们已飞速进入大数据 时代。不仅是互联网行业,大数据实体经济的渗透融合也正全面展开。随着大 数据的价值凸显、应用领域日益广泛,在今年,数据中台的概念十分火热,中台 是最早由阿里在2015年提出的“大中台,小前台”战略中延伸出来的概念,它是将 数据加工以后封装成一个公共的数据产品或服务,去服务业务。在市场大环境受 影响的情况下,企业都开始修炼内功,提升内部效率,避免内部平台的重复建 设,能快速去响应业务变化。对于大公司来说,企业数据基础建设很强,公司内 部数据量大且足够复杂,他们研发的数据平台、产品及工具等在解决了公司内部 的事情后,开始寻求对外输出,打造一些通用的数据产品服务中小企业,去做商 业变现。从人才需求来看,近年来,国内对于数据科学家的需求在逐渐上升。在 传统行业,企业需要利用数字化去做创新,用人工智能和大数据开拓新业务,提 升效率,更好地业务结合,因此CDO或者数字化转型负责人的角色比较紧缺。 从岗位角度来看,行业内数据科学、数据工程职位需求旺盛,而传统的BI和数据 分析开始出现饱和。 人才缺口:数据中台的火热,导致数据平台研发、数据应用开发和数据产品经理 的职位紧缺 人才来源:互联网一二线大公司和一些专门做数据的公司 19 | 高科技 高科技 | 20 AIoT架构师 边缘计算专家 数据架构师 30-40% 60-500万 80-300万 30-40% 100-200万 20-30% 5G专家 异构计算专家 AIoT智能硬件专家 20-30% 50-300万 100-450万 30-40% 60-200万 20-30% 智慧交通科学家 20-30% 100-200万 智能运维专家 20-30% 60-200万 AIoT 云计算 政务解决方案架构师 AI研发工程师 20-30% 30-120万 40-150万 25-40% 智慧零售研发工程师 15-25% 40-150万 首席运营官(数字化转型) 首席技术官 30%+ 300-600万 200-360万 30%+ 数字化战略负责人 200-400万 30%+ 数字化转型 热门职位薪酬
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值