什么是AI(Agent)智能体?

智能体介绍

智能体(Agent)是人工智能(AI)和计算机科学中的一个核心概念,它指的是能够在特定环境中自主执行任务或作出决策的实体。智能体可以是软件形式,如聊天机器人、推荐系统、游戏中的角色等;也可以是硬件形式,如自动驾驶汽车、服务机器人等。以下是智能体的几个关键特点:

  1. 自主性(Autonomy): 智能体能够在没有直接外部干预的情况下控制其自身行为和内部状态。它们可以独立地操作,并对自己的行为做出决策。

  2. 社会能力(Social Ability): 智能体能够与其他智能体(包括人类)交互和沟通。它们可以理解其他智能体的意图,并在多智能体系统中协同工作。

  3. 反应性(Reactivity): 智能体能够感知其环境并对环境变化做出快速反应。它们可以根据传感器输入或外部事件来调整自己的行为。

  4. 主动性(Pro-activeness): 智能体不仅能够响应环境,还能够主动采取行动以实现其设计目标。这意味着智能体能够预测未来事件并采取预防措施。

  5. 智能性(Intelligence): 智能体能够使用人工智能技术,如机器学习、自然语言处理、计算机视觉等,来提高其决策和问题解决的能力。

智能体的应用非常广泛,包括但不限于:

  • 个人助理

    :如智能手机上的语音助手,可以帮助用户设置提醒、搜索信息等。

  • 客户服务

    :在线客服机器人,可以自动回答用户的常见问题。

  • 智能家居

    :控制家庭设备的智能系统,如智能恒温器、智能灯泡等。

  • 工业自动化

    :在生产线上执行特定任务的机器人。

  • 医疗辅助

    :辅助医生进行诊断和治疗的智能系统。

  • 金融服务

    :进行交易、风险评估和欺诈检测的智能算法。

智能体的发展是人工智能领域的一个重要方向,它们正在变得越来越复杂和智能,能够在各种环境中执行越来越复杂的任务。

智能体框架

智能体框架是构建智能体系统的关键技术,它们提供了开发、部署和运行智能体的基础设施和工具。以下是一些主流的智能体框架及其特点

单智能体框架

  1. BabyAGI
  • 简介:作为早期agent的实践,babyagi框架简单实用,里面的任务优先级排序模块是一个比较独特的feature。

  • Git仓库地址:https://github.com/yoheinakajima/babyagi

多智能体框架

  1. AutoGen(微软)
  • 简介:AutoGen由微软推出,包含用户智能体和助手智能体两个核心角色。用户智能体负责提出编程需求或编写提示词,助手智能体则负责生成和执行代码。该框架擅长于代码任务的多智能体编排,同时也具备处理其他类型任务的能力。

  • Git仓库地址:https://github.com/microsoft/autogen

  1. CrewAI
  • 简介:CrewAI是一个直观、易于配置的工具,用于快速搭建Multi-AI Agent任务演示。它允许创建新智能体并将其融入系统,操作简单,即使是非技术背景的用户也能轻松上手。

  • Git仓库地址:https://github.com/crewAIInc/crewAI

  1. LangGraph
  • 简介:用于构建具有状态和多角色应用程序的库,主要用于创建智能体和多智能体工作流。

  • Git仓库地址:https://github.com/langchain-ai/langgraph

  1. Magentic-One
  • 简介:微软推出的高性能通用智能体系统,采用多智能体架构。

  • Git仓库地址:https://github.com/microsoft/autogen/tree/main/python/packages/autogen-magentic-one

  1. MetaGPT
  • 简介:以一行需求作为输入,输出用户故事/竞争分析/需求/数据结构/API/文档等。MetaGPT是一个创新框架,它将人类工作流程作为元编程方法整合到基于LLM的多智能体协作中。该框架使用标准化操作程序(SOP)编码为提示,要求模块化输出,以增强代理的领域专业知识并减少错误。实验表明,MetaGPT在协作软件工程基准上生成了更连贯和正确的解决方案,展示了将人类知识整合进多智能体系统的潜力。

  • Git仓库地址:https://github.com/geekan/MetaGPT

  1. AgentScope
  • 简介:阿里开源的Multi-agent框架,支持分布式框架,并且做了工程链路上的优化及监控。

  • Git仓库地址:https://github.com/modelscope/agentscope

  1. 斯坦福虚拟小镇
  • 简介:虚拟小镇作为早期的multi-agent项目,很多设计也影响到了其他multi-agent框架,里面的反思和记忆检索feature比较有意思,模拟人类的思考方式。

  • Git地址:https://github.com/joonspk-research/generative_agents

这些框架代表了智能体技术的不同方向和应用,从软件开发到工作流自动化,再到多智能体协作,它们为智能体的开发和应用提供了强大的支持。开发者可以根据自己的需求选择合适的框架来构建特定的智能体应用。

总结

Agent的核心逻辑是让LLM根据动态变化的环境信息,选择执行具体的行动,并反过来影响环境,通过多轮迭代重复执行上述步骤,直到完成目标。总结就是:感知§ — 规划§ — 行动(A),智能体在工程实现上可以拆分出四大块核心模块:推理、记忆、工具、行动

单智能体= 大语言模型(LLM) + 观察(obs) + 思考(thought) + 行动(act) + 记忆(mem)

多智能体=智能体 + 环境 + SOP + 评审 + 通信 + 成本

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### AI Agent智能体的应用 AI Agent作为一种能够自主执行任务、做出决策并与环境互动的人工智能实体,在多个行业中得到了广泛应用。这类智能体具备感知能力、推理能力、学习能力、决策能力和行动能力,使其可以在复杂多变的环境下有效运作[^2]。 #### 物联网环境下的应用实例 在物联网(IoT)环境中,AI Agents被用来处理来自各种传感器的数据流并据此采取适当措施。例如智能家居系统中,通过分析温度湿度等参数来自动调节空调设备的工作状态;又比如智慧城市项目里,交通信号灯可以根据车流量动态调整红绿灯时间间隔以缓解拥堵状况。 #### 电力系统的管理与控制 对于电力行业而言,引入了基于AI技术构建而成的智能代理来进行电网调度工作。它们利用自身的高级特性——即强大的计算资源支持下所拥有的高效算法模型——完成诸如负荷预测、故障诊断等功能模块开发,并最终达到提高供电可靠性及降低运营成本的目的。 ### 实现方式和技术细节 要创建一个功能完备且性能优越的AI Agent,通常涉及以下几个关键技术环节: - **机器学习框架的选择**:根据应用场景的不同选取合适的ML/DL库(如TensorFlow, PyTorch),以便于后续训练过程中的调参优化操作。 - **特征工程的设计**:针对特定业务逻辑提取有效的输入变量集合,这一步骤直接影响到整个系统的泛化能力和准确性水平。 - **强化学习机制的融入**:为了让agent更好地适应变化莫测的真实世界情况,采用RL方法让其不断试错从而积累经验教训直至找到最优解路径。 ```python import gym from stable_baselines3 import PPO env = gym.make('CartPole-v1') model = PPO("MlpPolicy", env, verbose=1) model.learn(total_timesteps=10_000) obs = env.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, rewards, dones, info = env.step(action) env.render() ``` 这段代码展示了如何使用Python编程语言配合开源工具包`stable-baselines3`快速搭建起一套简单的强化学习实验平台,其中包含了定义环境空间、初始化策略网络结构以及启动迭代更新循环等内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值