大模型训练六步法:深入解析AI模型训练的关键步骤!

大模型(Large Models)的训练是近年来人工智能领域的核心技术之一,尤其是在自然语言处理、计算机视觉等任务中,如 GPT、BERT 等模型的成功背后,离不开复杂的训练过程。本文将为你介绍大模型是如何训练的,包括数据准备、模型架构、训练方法和硬件支持等方面。

1. 数据准备:海量数据的基础

大模型的训练需要大量的数据,因为它们需要从海量信息中学习模式和规律。数据的质量和数量对模型的性能有着直接影响,以下是数据准备的几个关键步骤:

  • 数据收集:大模型通常依赖于广泛的文本数据,像 GPT-3、BERT 这样的大模型,会从互联网上抓取大量公开可用的数据,涵盖百科、新闻、社交媒体、图书等多种文本来源。

  • 数据预处理:收集到的数据需要进行清洗和整理。比如,去除重复信息、纠正拼写错误、过滤掉不相关或低质量的数据。还需要将文本转换为模型可以理解的格式,如将文字转化为数字表示。

  • 分词和标记化:语言模型会将输入的文本进行分词,转化为一个“词片段”或“子词”。这一过程叫做标记化(tokenization),比如“学习”可以被拆解成“学”和“习”,或按更小的单元来处理。这是大模型理解语言的第一步。

2. 模型架构:基于 Transformer 的核心

自从 2017 年Transformer架构被提出后,几乎所有的大模型都采用了这种架构。Transformer 的核心是自注意力机制(Self-Attention),它允许模型在处理一个单词时,可以“关注”到句子中的其他单词,这使得模型能够更好地理解上下文和复杂的语言关系。

  • 编码器与解码器:Transformer 包括编码器和解码器部分。比如,BERT 模型使用了只包含编码器的部分,它通过双向注意力机制同时考虑上下文信息,适合于理解任务。而 GPT 系列模型则使用了只包含解码器的部分,它更擅长生成文本。

  • 层数和参数量:大模型之所以被称为“大”,主要是因为其包含了极多的层数和参数。比如,GPT-3 拥有 1750 亿个参数,这意味着模型拥有巨大的“容量”去学习复杂的模式和语义。

3. 训练方法:预训练与微调

大模型的训练通常分为两个阶段:预训练(Pre-training)和微调(Fine-tuning)。

  • 预训练:在预训练阶段,模型通过海量的无标签数据进行自监督学习。比如,BERT 使用了掩码语言模型(Masked Language Model)任务,它会随机掩盖一些词,然后让模型去预测这些被掩盖的词是什么。通过这种方式,模型学会了丰富的语义表示。

  • 微调:预训练后的模型会在特定的任务上进行微调。例如,在情感分析、机器翻译或文本分类任务上使用带标签的数据进行训练。这一步骤使得预训练的大模型能够适应各种下游任务。

4. 硬件支持:分布式计算和并行化

大模型的训练需要强大的计算资源,特别是当模型参数量达到数十亿甚至上千亿时,单台计算机已经无法承担训练任务。因此,分布式计算和并行化技术成为大模型训练的关键。

  • GPU 和 TPU:图形处理器(GPU)和张量处理单元(TPU)是深度学习模型训练的主要硬件支持。它们可以并行处理大量的矩阵运算,这大大加速了模型的训练过程。像 GPT-3 这样的大模型通常在数千块 GPU 或 TPU 上进行训练。

  • 分布式训练:由于数据和模型参数的规模巨大,模型的训练会采用分布式训练方法,将计算任务分布到多台机器上并行处理。常用的技术包括数据并行(Data Parallelism)和模型并行(Model Parallelism)。

  • 数据并行:将训练数据划分成不同的部分,分别在多台机器上进行训练,每台机器有一个完整的模型副本。

  • 模型并行:将模型本身划分成不同的部分,每台机器负责训练模型的不同部分,这种方法常用于处理非常大的模型参数。

5. 训练挑战:时间、能耗与优化

大模型的训练是一个复杂且昂贵的过程,通常需要耗费数周甚至数月的时间,成本高达数百万美元。除了硬件成本外,训练过程中还面临一些技术挑战:

  • 梯度消失与爆炸:深度模型中可能会出现梯度消失或爆炸的问题,特别是在非常深的神经网络中。这会导致模型无法有效训练。为了解决这个问题,常常采用梯度裁剪或优化算法的调整。

  • 超参数调优:模型的训练涉及到大量的超参数,如学习率、批量大小等。这些超参数的选择对训练效果至关重要。通常,研究人员会进行大量实验,测试不同超参数组合的效果。

  • 能耗问题:大模型的训练消耗大量能源,也引发了对环境影响的讨论。为了应对这一问题,研究人员正在开发更高效的模型架构和算法,以减少能耗。

6. 未来发展方向:高效训练与模型压缩

随着大模型越来越大,研究人员也在探索如何提高训练效率以及如何压缩模型,使其在不显著降低性能的前提下变得更轻量、更高效。

  • 模型蒸馏(Model Distillation):通过训练一个较小的模型去模仿大模型的行为,使得小模型能够以更少的计算资源实现接近大模型的性能。

  • 稀疏训练(Sparse Training):稀疏训练方法通过减少模型中的不必要连接,降低模型的计算复杂度。稀疏性允许模型在不牺牲太多性能的情况下大幅度减少参数数量。

  • 混合精度训练:为了提高计算效率,研究人员使用混合精度训练,即将部分计算转换为更低精度的浮点数,以减少内存占用和计算量。


总结来说,大模型的训练过程涉及海量数据、复杂的模型架构、高效的硬件支持和优化的训练方法。随着技术的不断进步,大模型将变得更加强大和高效,推动 AI 在更多领域取得突破。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值