GenAI合成数据为科学家带来伦理挑战及应对之道

李升伟 编译

作者:David B. Resnik(resnikd@niehs.nih.gov)、Mohammad Hosseini、Jeff J.H. Kim等
2025年2月26日
《美国国家科学院院刊》(PNAS)122卷9期
DOI: 10.1073/pnas.2409182122

尽管科学家使用合成数据已有60余年历史,但机器学习与生成式人工智能(GenAI)的发展极大推动了合成数据在科研中的应用。合成数据能填补缺失信息、校正数据集偏差、模拟复杂现象、验证假设、替代动物或人类受试者实验、加速临床试验化合物筛选,并保护敏感隐私数据。然而,GenAI合成数据在促进科研的同时,也带来了必须解决的伦理挑战,以避免对科学和社会造成不可承受的风险。

定义与特性

GenAI合成数据指通过生成对抗网络或变分自编码器等算法生成的、用于特定数据科学任务的数据。其可完全虚构或基于真实数据衍生,且生成过程可控制与真实数据的相似度(如隐私信息含量)。

核心伦理问题

数据真实性风险

GenAI能生成高度逼真的显微影像、放射学图像、临床试验数据等,甚至篡改真实数据以支持特定假设,可能助长学术不端行为(如故意伪造或篡改数据)。

传统统计检测伪造数据的方法因GenAI的逼真生成能力逐渐失效,而AI检测工具尚不完善,可能引发技术对抗的“军备竞赛”。

混淆真实与合成数据

若未充分披露合成数据的使用,可能导致研究记录污染、数据质量下降、AI模型训练失败。例如:

科学家可能迫于发表压力用GenAI伪造论文或基金申请数据;

企业或政府可能为产品审批或宣传目的散布虚假数据;

调查委员会因技术新颖性难以判定合成数据使用是否构成学术不端。

隐私与偏见隐患

合成数据虽能保护隐私,但生成过程若安全措施不足,仍可能泄露原始敏感信息。

若未严格验证生成模型,合成数据可能放大训练数据中的偏见,导致歧视并削弱公众对AI的信任。

应对方案

  • 明确定义标准

期刊、机构及资助组织需界定“真实数据”与“合成数据”,强调数据来源(provenance)的真实性——即数据生成过程与真实现象的科学关联性(如MRI图像真实,而扫描伪影则非)。

  • 强制披露规范

要求研究者公开合成数据的生成目的、方法及具体部分,并共享算法代码。出版伦理委员会等组织可牵头制定准则。

  • 加强科研教育

将合成数据的伦理使用纳入科研方法论培训,促进不同职业阶段研究者的协作学习。

技术解决方案

开发数字水印、区块链认证真实数据、AI伪造检测工具等技术,但需注意其成本与局限性——科学数据的质量最终仍依赖于研究者的诚信。

结语

GenAI合成数据既是科研利器,亦需警惕其伦理陷阱。科学界应通过定义规范、透明披露、教育培训和技术创新,最大化其效益,最小化其风险。

(注:原文中图表标注、参考文献及致谢部分因篇幅未完整呈现,实际翻译需根据客户需求调整详略。)

原文链接:https://www.pnas.org/doi/10.1073/pnas.2409182122

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值