7.1 线性空间

  经过了长期对事物的观察,人们发现了自然界的大多数事物都是按一定的比例组合的,由此,数学家们就发明了线性组合的概念。我举个例子,我们开发HTML代码时,总会配颜色,黄色就等于255红加上255绿。所以黄色就是红绿蓝的一种线性组合。
  通俗地讲,所有的线性组合放在一个集合里就变成了线性空间,那为什么要有线性空间呢?原因是可以把组合本身的各个配比单独抽出来,因为配比本身就是一组数字,这样就只需要研究这组数字就行了。这样大大降低了研究计算的复杂度。拿颜色的配比来说,红绿蓝三原色,组成了颜色空间。那么一个配比本身,在数学上就叫向量,比如黄色的向量就是 ( 255 , 255 , 0 ) T (255,255,0)^T (255,255,0)T.
  而组合后面的具体事物,就叫做线性空间的自然基。比如颜色空间的自然基就是红绿蓝三原色。当然颜色空间并不是特别严谨的数学上上的线性空间,以255为最大值的颜色加法来说,两个255加起来还是255,这点就不太符合数学上对线性空间的严格定义。但是颜色空间这个例子能比较容易地理解线性空间,所以我还是举了颜色空间做例子。
  简单地讲明白了啥是线性空间后,我再介绍下数学中最常用的三大线性空间:欧几里得空间、多项式空间和矩阵空间。

几何空间

  前面讲了要理解线性空间,就得有线性组合的概念,而三维空间的每个点,可以看成是x、y、z三个坐标的组合,比如点 ( 1 , 3 , 1 ) (1,3,1) (1,3,1),就是 x x x轴坐标为1, y y y轴坐标为3, z z z轴坐标为1的线性组合,所以就可以用向量 ( 1 , 3 , 1 ) T (1,3,1)^T (1,3,1)T来代表这个点。
  没有一个官方的“几何空间”的概念,估计把涉及几何运算的的都叫做几何空间吧。几何空间知识范围比较广,比如欧几里得空间、仿射空间等。比如欧几里得空间有向量长度,向量夹角,内积之类的概念,广泛应用于物理上运动学计算、计算机3D建模动画之类,所以说是最重要的线性空间,也是考试的热门。
  几何空间的基础是三维实空间,在数学上有个符号,叫做 R 3 \mathbb{R}^3 R3,其他维度的实空间就是右上角的数字对应变化就行了。

多项式空间

  多项式也是数学中的重要内容,一个多项式可以看作是各次幂的线性组合,举个例子: 3 x 2 + x 2 + 4 x + 7 3x^2+x^2+4x+7 3x2+x2+4x+7这个多项式,可以看成是 1 , x , x 2 , x 3 1,x,x^2,x^3 1,x,x2,x3四个自然基的线性组合,所以可以用向量 ( 7 , 4 , 1 , 3 ) T (7,4,1,3)^T (7,4,1,3)T来表示这个多项式。
  多项式的乘法并不能直接用向量乘法来计算,但是可以变成矩阵乘法,我举个例子,用 2 x 2 + 1 2x^2+1 2x2+1去乘以其他最高两次幂多项式可以用这个矩阵去做:
( 1 0 0 0 1 0 2 0 1 0 2 0 0 0 2 ) \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 2 & 0 & 1\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix} 102000102000102
  比如乘以 3 x 2 + x + 2 3x^2+x+2 3x2+x+2可以用矩阵乘法:
( 1 0 0 0 1 0 2 0 1 0 2 0 0 0 2 ) ( 2 1 3 ) = ( 2 1 7 2 6 ) \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 2 & 0 & 1\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix}\begin{pmatrix} 2\\ 1\\ 3 \end{pmatrix}= \begin{pmatrix} 2\\ 1\\ 7\\ 2\\ 6 \end{pmatrix}\\ 102000102000102 213 = 21726
  最后结果就是 ( 2 x 2 + 1 ) ( 3 x 2 + x + 2 ) = 6 x 4 + 2 x 3 + 7 x 2 + x + 2 (2x^2+1)(3x^2+x+2)=6x^4+2x^3+7x^2+x+2 (2x2+1)(3x2+x+2)=6x4+2x3+7x2+x+2。所以多项式乘法也变得很方便了,可以使用矩阵乘法去计算了。提前透露下,多项式的求导都可以转变为矩阵乘法哦。

矩阵空间

  矩阵空间是把每个矩阵看成是各个位置上只有一个1,其他全为0的矩阵的线性组合。比如下面这个矩阵:
( 2 1 4 3 ) \begin{pmatrix} 2 & 1\\ 4 & 3\\ \end{pmatrix}\\ (2413)
  可以看成下面四个矩阵的线性组合:
( 1 0 0 0 ) ( 0 1 0 0 ) ( 0 0 1 0 ) ( 0 0 0 1 ) \begin{pmatrix} 1 & 0\\ 0 & 0\\ \end{pmatrix} \begin{pmatrix} 0 & 1\\ 0 & 0\\ \end{pmatrix}\begin{pmatrix} 0 & 0\\ 1 & 0\\ \end{pmatrix}\begin{pmatrix} 0 & 0\\ 0 & 1\\ \end{pmatrix}\\ (1000)(0010)(0100)(0001)
  所以可以用矩阵在这四个基的坐标向量 ( 1 , 2 , 4 , 3 ) T (1,2,4,3)^T (1,2,4,3)T表示这个矩阵,上述 2 × 2 2\times 2 2×2矩阵空间的符号为 R 2 × 2 \mathbb R^{2\times 2} R2×2.如果是复矩阵,把 R \mathbb R R换成 C \mathbb C C就好了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值