定义
酉空间,又叫复内积空间,也就是是在复线性空间里定义了内积的空间。这就和欧几里得空间形成了一个对应关系。实内积空间叫欧几里得空间,复内积空间叫酉空间。但是酉空间的内积和欧几里得空间有所不同。我们知道欧几里得空间的内积需要满足三个性质:
- 正定性,自己和自己的内积必须大于0,0向量自己和自己的内积等于0, ( a , a ) ≥ 0 (\boldsymbol a,\boldsymbol a)\ge 0 (a,a)≥0;
- 线性性,对于数乘,可以将数乘提到外面, ( k a , b ) = k ( a , b ) (k\boldsymbol a,\boldsymbol b)=k(\boldsymbol a,\boldsymbol b) (ka,b)=k(a,b)
- 对称性,也就是交换律, ( a , b ) = ( b , a ) (\boldsymbol a,\boldsymbol b)=(\boldsymbol b,\boldsymbol a) (a,b)=(b,a)
- 加法分配律, ( a + b , c ) = ( a , c ) + ( b , c ) (\boldsymbol a+\boldsymbol b,\boldsymbol c)=(\boldsymbol a,\boldsymbol c)+(\boldsymbol b,\boldsymbol c) (a+b,c)=(a,c)+(b,c)
而酉空间里的内积的定义则有所不同。它的内积是这样定义的:
- 加法分配律, ( a + b , c ) = ( a , c ) + ( b , c ) (\boldsymbol a+\boldsymbol b,\boldsymbol c)=(\boldsymbol a,\boldsymbol c)+(\boldsymbol b,\boldsymbol c) (a+b,c)=(a,c)+(b,c);
- 正定性,与欧几里得空间一致, ( a , a ) ≥ 0 (\boldsymbol a,\boldsymbol a)\ge 0 (a,a)≥0,仅当a为0时等于0;
与欧几里得空间不同的地方是以下两点定义:
- 数乘线性性, 左边 ( k a , b ) = k ( a , b ) (k\boldsymbol a,\boldsymbol b)=k(\boldsymbol a,\boldsymbol b) (ka,b)=k(a,b),右边是共轭 ( a , k b ) = k ˉ ( a , b ) (\boldsymbol a,k\boldsymbol b)=\bar{k}(\boldsymbol a,\boldsymbol b) (a,kb)=kˉ(a,b)
- 埃尔米特Hermite性, ( a , b ) = ( b , a ) ‾ (\boldsymbol a,\boldsymbol b)=\overline{(\boldsymbol b,\boldsymbol a)} (a,b)=(b,a)。
复内积,也叫埃尔米特内积Hermitian inner product。Hermite是法国数学家,因为法语中H是不发音的,所以读音是埃尔米特,而不是赫尔米特。类似的法语发音现象还有爱马仕Hermès,大文豪雨果Hugo。
标准复内积
欧几里得空间有个标准内积,同样复内积也有一个标准复内积。我们知道内积本身作为一个双线性函数,它有自己的矩阵形式,比如欧几里得空间的内积,可以写成这样:
(
a
,
b
)
=
a
T
H
b
(a,b)=a^THb
(a,b)=aTHb
当H是单位矩阵时,就是标准内积。
但是埃尔米特内积不行,它不能按常规,它必须定义为:
(
a
,
b
)
=
a
T
H
b
ˉ
(a,b)=a^TH\bar b
(a,b)=aTHbˉ
当H为单位矩阵时,称为标准复内积,或复空间的标准内积,或标准埃尔米特内积。其实用上面的共轭双线性型的定义计算比较麻烦,因为中间的度量矩阵H是单位阵,所以可以直接这样算:
a
=
(
x
1
x
2
⋮
x
n
)
,
b
=
(
y
1
y
2
⋮
y
n
)
(
a
,
b
)
=
x
1
y
1
‾
+
x
2
y
2
‾
+
⋯
+
x
n
y
n
‾
a=\begin{pmatrix}x_1\\x_2\\\vdots \\x_n\end{pmatrix},b=\begin{pmatrix}y_1\\y_2\\\vdots \\y_n\end{pmatrix}\\ (a,b)=x_1\overline{y_1}+x_2\overline{y_2}+\cdots +x_n\overline{y_n}
a=
x1x2⋮xn
,b=
y1y2⋮yn
(a,b)=x1y1+x2y2+⋯+xnyn
举个计算标准埃尔米特内积的例子:
a
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
,
b
=
(
2
+
i
4
−
5
i
3
+
4
i
−
1
−
2
i
)
(
a
,
b
)
=
a
T
I
b
ˉ
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
(
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
)
(
2
−
i
4
+
5
i
3
−
4
i
−
1
+
2
i
)
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
(
2
−
i
4
+
5
i
3
−
4
i
−
1
+
2
i
)
=
49
+
32
i
a=\begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix}, b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix}\\ (a,b)=a^TI\bar{b}\\= \begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix} \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix} \begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\=\begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix}\begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\=49+32i
a=
1+3i3−2i2+5i6−i
,b=
2+i4−5i3+4i−1−2i
(a,b)=aTIbˉ=(1+3i3−2i2+5i6−i)
1000010000100001
2−i4+5i3−4i−1+2i
=(1+3i3−2i2+5i6−i)
2−i4+5i3−4i−1+2i
=49+32i
一般Hermite内积
一般的Hermite内积,就不是标准的埃尔米特内积,中间的度量矩阵不是单位阵,所以计算时不能省略,我举个例子:
a
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
,
b
=
(
2
+
i
4
−
5
i
3
+
4
i
−
1
−
2
i
)
,
H
=
(
1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
)
(
a
,
b
)
=
a
T
H
b
ˉ
=
(
1
+
3
i
6
−
4
i
6
+
15
i
24
−
4
i
)
(
2
−
i
4
+
5
i
3
−
4
i
−
1
+
2
i
)
=
111
+
92
i
(
b
,
a
)
=
b
T
H
a
ˉ
=
(
2
+
i
8
−
10
i
9
+
12
i
−
4
−
8
i
)
(
1
−
3
i
3
+
2
i
2
−
5
i
6
+
i
)
=
111
−
92
i
a= \begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix} ,b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix} ,H= \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}\\ (a,b)=a^TH\bar b\\= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\ =111+92i\\ (b,a)=b^TH\bar a\\=\begin{pmatrix}2+i & 8-10i & 9+12i & -4-8i\\ \end{pmatrix}\begin{pmatrix}1-3i\\ 3+2i\\ 2-5i\\ 6+i\\ \end{pmatrix}\\=111-92i
a=
1+3i3−2i2+5i6−i
,b=
2+i4−5i3+4i−1−2i
,H=
1000020000300004
(a,b)=aTHbˉ=(1+3i6−4i6+15i24−4i)
2−i4+5i3−4i−1+2i
=111+92i(b,a)=bTHaˉ=(2+i8−10i9+12i−4−8i)
1−3i3+2i2−5i6+i
=111−92i
从结果上看,满足Hermite性。
度量空间
引入距离后,才能变成度量空间。酉空间也有长度和距离。长度的定义就是
∣
a
∣
=
(
a
,
a
)
|a|=\sqrt{(a,a)}
∣a∣=(a,a),有了长度就有了距离,距离的定义是:
d
(
a
,
b
)
=
∣
a
−
b
∣
=
(
a
−
b
)
,
(
a
−
b
)
=
(
a
−
b
)
T
H
(
a
−
b
)
‾
d(a,b)=|a-b|=\sqrt{(a-b),(a-b)} \\=(a-b)^TH\overline{(a-b)}
d(a,b)=∣a−b∣=(a−b),(a−b)=(a−b)TH(a−b)
公式中的H是某个埃尔米特内积的度量矩阵。以上面例子里的数据,以非标准内积作为内积,计算下距离:
a
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
,
b
=
(
2
+
i
4
−
5
i
3
+
4
i
−
1
−
2
i
)
,
H
=
(
1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
)
a
−
b
=
(
−
1
+
2
i
−
1
+
3
i
−
1
+
i
7
+
i
)
(
a
−
b
)
T
=
(
1
+
3
i
3
−
2
i
2
+
5
i
6
−
i
)
(
a
−
b
)
T
H
=
(
1
+
3
i
6
−
4
i
6
+
15
i
24
−
4
i
)
(
a
−
b
)
‾
=
(
−
1
−
2
i
−
1
−
3
i
−
1
−
i
7
−
i
)
d
(
a
,
b
)
=
(
a
−
b
)
T
H
(
a
−
b
)
‾
=
(
1
+
3
i
6
−
4
i
6
+
15
i
24
−
4
i
)
(
−
1
−
2
i
−
1
−
3
i
−
1
−
i
7
−
i
)
=
160
−
92
i
a= \begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix}, b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix}, H= \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}\\ a-b= \begin{pmatrix}-1+2i\\ -1+3i\\ -1+i\\ 7+i\\ \end{pmatrix}\\ (a-b)^T=\begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix}\\ (a-b)^TH= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\\ \overline{(a-b)}=\begin{pmatrix}-1-2i\\ -1-3i\\ -1-i\\ 7-i\\ \end{pmatrix}\\ d(a,b)=(a-b)^TH\overline{(a-b)}\\= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\begin{pmatrix}-1-2i\\ -1-3i\\ -1-i\\ 7-i\\ \end{pmatrix}\\=160-92i
a=
1+3i3−2i2+5i6−i
,b=
2+i4−5i3+4i−1−2i
,H=
1000020000300004
a−b=
−1+2i−1+3i−1+i7+i
(a−b)T=(1+3i3−2i2+5i6−i)(a−b)TH=(1+3i6−4i6+15i24−4i)(a−b)=
−1−2i−1−3i−1−i7−i
d(a,b)=(a−b)TH(a−b)=(1+3i6−4i6+15i24−4i)
−1−2i−1−3i−1−i7−i
=160−92i