8.3 酉空间

定义

  酉空间,又叫复内积空间,也就是是在复线性空间里定义了内积的空间。这就和欧几里得空间形成了一个对应关系。实内积空间叫欧几里得空间,复内积空间叫酉空间。但是酉空间的内积和欧几里得空间有所不同。我们知道欧几里得空间的内积需要满足三个性质:

  1. 正定性,自己和自己的内积必须大于0,0向量自己和自己的内积等于0, ( a , a ) ≥ 0 (\boldsymbol a,\boldsymbol a)\ge 0 (a,a)0;
  2. 线性性,对于数乘,可以将数乘提到外面, ( k a , b ) = k ( a , b ) (k\boldsymbol a,\boldsymbol b)=k(\boldsymbol a,\boldsymbol b) (ka,b)=k(a,b)
  3. 对称性,也就是交换律, ( a , b ) = ( b , a ) (\boldsymbol a,\boldsymbol b)=(\boldsymbol b,\boldsymbol a) (a,b)=(b,a)
  4. 加法分配律, ( a + b , c ) = ( a , c ) + ( b , c ) (\boldsymbol a+\boldsymbol b,\boldsymbol c)=(\boldsymbol a,\boldsymbol c)+(\boldsymbol b,\boldsymbol c) (a+b,c)=(a,c)+(b,c)

  而酉空间里的内积的定义则有所不同。它的内积是这样定义的:

  1. 加法分配律, ( a + b , c ) = ( a , c ) + ( b , c ) (\boldsymbol a+\boldsymbol b,\boldsymbol c)=(\boldsymbol a,\boldsymbol c)+(\boldsymbol b,\boldsymbol c) (a+b,c)=(a,c)+(b,c);
  2. 正定性,与欧几里得空间一致, ( a , a ) ≥ 0 (\boldsymbol a,\boldsymbol a)\ge 0 (a,a)0,仅当a为0时等于0;

  与欧几里得空间不同的地方是以下两点定义:

  1. 数乘线性性, 左边 ( k a , b ) = k ( a , b ) (k\boldsymbol a,\boldsymbol b)=k(\boldsymbol a,\boldsymbol b) (ka,b)=k(a,b),右边是共轭 ( a , k b ) = k ˉ ( a , b ) (\boldsymbol a,k\boldsymbol b)=\bar{k}(\boldsymbol a,\boldsymbol b) (a,kb)=kˉ(a,b)
  2. 埃尔米特Hermite性, ( a , b ) = ( b , a ) ‾ (\boldsymbol a,\boldsymbol b)=\overline{(\boldsymbol b,\boldsymbol a)} (a,b)=(b,a)

  复内积,也叫埃尔米特内积Hermitian inner product。Hermite是法国数学家,因为法语中H是不发音的,所以读音是埃尔米特,而不是赫尔米特。类似的法语发音现象还有爱马仕Hermès,大文豪雨果Hugo

标准复内积

  欧几里得空间有个标准内积,同样复内积也有一个标准复内积。我们知道内积本身作为一个双线性函数,它有自己的矩阵形式,比如欧几里得空间的内积,可以写成这样:
( a , b ) = a T H b (a,b)=a^THb (a,b)=aTHb
  当H是单位矩阵时,就是标准内积。
  但是埃尔米特内积不行,它不能按常规,它必须定义为:
( a , b ) = a T H b ˉ (a,b)=a^TH\bar b (a,b)=aTHbˉ
  当H为单位矩阵时,称为标准复内积,或复空间的标准内积,或标准埃尔米特内积。其实用上面的共轭双线性型的定义计算比较麻烦,因为中间的度量矩阵H是单位阵,所以可以直接这样算:
a = ( x 1 x 2 ⋮ x n ) , b = ( y 1 y 2 ⋮ y n ) ( a , b ) = x 1 y 1 ‾ + x 2 y 2 ‾ + ⋯ + x n y n ‾ a=\begin{pmatrix}x_1\\x_2\\\vdots \\x_n\end{pmatrix},b=\begin{pmatrix}y_1\\y_2\\\vdots \\y_n\end{pmatrix}\\ (a,b)=x_1\overline{y_1}+x_2\overline{y_2}+\cdots +x_n\overline{y_n} a= x1x2xn ,b= y1y2yn (a,b)=x1y1+x2y2++xnyn
  举个计算标准埃尔米特内积的例子:
a = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) , b = ( 2 + i 4 − 5 i 3 + 4 i − 1 − 2 i ) ( a , b ) = a T I b ˉ = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) ( 2 − i 4 + 5 i 3 − 4 i − 1 + 2 i ) = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) ( 2 − i 4 + 5 i 3 − 4 i − 1 + 2 i ) = 49 + 32 i a=\begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix}, b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix}\\ (a,b)=a^TI\bar{b}\\= \begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix} \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix} \begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\=\begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix}\begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\=49+32i a= 1+3i32i2+5i6i ,b= 2+i45i3+4i12i (a,b)=aTIbˉ=(1+3i32i2+5i6i) 1000010000100001 2i4+5i34i1+2i =(1+3i32i2+5i6i) 2i4+5i34i1+2i =49+32i

一般Hermite内积

  一般的Hermite内积,就不是标准的埃尔米特内积,中间的度量矩阵不是单位阵,所以计算时不能省略,我举个例子:
a = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) , b = ( 2 + i 4 − 5 i 3 + 4 i − 1 − 2 i ) , H = ( 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ) ( a , b ) = a T H b ˉ = ( 1 + 3 i 6 − 4 i 6 + 15 i 24 − 4 i ) ( 2 − i 4 + 5 i 3 − 4 i − 1 + 2 i ) = 111 + 92 i ( b , a ) = b T H a ˉ = ( 2 + i 8 − 10 i 9 + 12 i − 4 − 8 i ) ( 1 − 3 i 3 + 2 i 2 − 5 i 6 + i ) = 111 − 92 i a= \begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix} ,b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix} ,H= \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}\\ (a,b)=a^TH\bar b\\= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\begin{pmatrix}2-i\\ 4+5i\\ 3-4i\\ -1+2i\\ \end{pmatrix}\\ =111+92i\\ (b,a)=b^TH\bar a\\=\begin{pmatrix}2+i & 8-10i & 9+12i & -4-8i\\ \end{pmatrix}\begin{pmatrix}1-3i\\ 3+2i\\ 2-5i\\ 6+i\\ \end{pmatrix}\\=111-92i a= 1+3i32i2+5i6i ,b= 2+i45i3+4i12i ,H= 1000020000300004 (a,b)=aTHbˉ=(1+3i64i6+15i244i) 2i4+5i34i1+2i =111+92i(b,a)=bTHaˉ=(2+i810i9+12i48i) 13i3+2i25i6+i =11192i
  从结果上看,满足Hermite性。

度量空间

  引入距离后,才能变成度量空间。酉空间也有长度和距离。长度的定义就是 ∣ a ∣ = ( a , a ) |a|=\sqrt{(a,a)} a=(a,a) ,有了长度就有了距离,距离的定义是:
d ( a , b ) = ∣ a − b ∣ = ( a − b ) , ( a − b ) = ( a − b ) T H ( a − b ) ‾ d(a,b)=|a-b|=\sqrt{(a-b),(a-b)} \\=(a-b)^TH\overline{(a-b)} d(a,b)=ab=(ab),(ab) =(ab)TH(ab)
  公式中的H是某个埃尔米特内积的度量矩阵。以上面例子里的数据,以非标准内积作为内积,计算下距离:
a = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) , b = ( 2 + i 4 − 5 i 3 + 4 i − 1 − 2 i ) , H = ( 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ) a − b = ( − 1 + 2 i − 1 + 3 i − 1 + i 7 + i ) ( a − b ) T = ( 1 + 3 i 3 − 2 i 2 + 5 i 6 − i ) ( a − b ) T H = ( 1 + 3 i 6 − 4 i 6 + 15 i 24 − 4 i ) ( a − b ) ‾ = ( − 1 − 2 i − 1 − 3 i − 1 − i 7 − i ) d ( a , b ) = ( a − b ) T H ( a − b ) ‾ = ( 1 + 3 i 6 − 4 i 6 + 15 i 24 − 4 i ) ( − 1 − 2 i − 1 − 3 i − 1 − i 7 − i ) = 160 − 92 i a= \begin{pmatrix}1+3i\\ 3-2i\\ 2+5i\\ 6-i\\ \end{pmatrix}, b= \begin{pmatrix}2+i\\ 4-5i\\ 3+4i\\ -1-2i\\ \end{pmatrix}, H= \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}\\ a-b= \begin{pmatrix}-1+2i\\ -1+3i\\ -1+i\\ 7+i\\ \end{pmatrix}\\ (a-b)^T=\begin{pmatrix}1+3i & 3-2i & 2+5i & 6-i\\ \end{pmatrix}\\ (a-b)^TH= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\\ \overline{(a-b)}=\begin{pmatrix}-1-2i\\ -1-3i\\ -1-i\\ 7-i\\ \end{pmatrix}\\ d(a,b)=(a-b)^TH\overline{(a-b)}\\= \begin{pmatrix}1+3i & 6-4i & 6+15i & 24-4i\\ \end{pmatrix}\begin{pmatrix}-1-2i\\ -1-3i\\ -1-i\\ 7-i\\ \end{pmatrix}\\=160-92i a= 1+3i32i2+5i6i ,b= 2+i45i3+4i12i ,H= 1000020000300004 ab= 1+2i1+3i1+i7+i (ab)T=(1+3i32i2+5i6i)(ab)TH=(1+3i64i6+15i244i)(ab)= 12i13i1i7i d(a,b)=(ab)TH(ab)=(1+3i64i6+15i244i) 12i13i1i7i =16092i

<think>嗯,用户问的是酉空间的计数公式。首先,我需要确认什么是酉空间酉空间应该是与复内积空间相关的,可能是在量子力学或者线性代数中的概念。然后,计数公式可能是指计某种结构或元素的数量,比如酉矩阵的数量,或者酉空间中基的数目之类的。 接下来,我应该回忆一下酉空间的基本定义。酉空间是复数域上的向量空间,带有正定的埃尔米特内积。而酉变换是保持这个内积不变的线性变换,对应的矩阵是酉矩阵,满足U*U=I,其中U*是共轭转置。 用户可能想知道在n维酉空间中,有多少个标准正交基,或者酉群的大小?例如,在实数情况下,正交群的元素数目可以通过维度和自由度来计,但复数的情况可能不同。 或者,可能是指酉空间中子空间的计数,例如k维子空间的数量,类似于有限域上向量空间中子空间数的q-analog,但酉空间可能涉及不同的参数? 另外,用户提到的“计数公式”可能涉及到组合数学中的某种生成函数或者具体的公式,比如在特定条件下计某些结构的数量。 需要明确的是,酉空间通常是在无限维的情况下讨论的,但如果是有限域上的酉空间,可能会有不同的计数方式。例如,有限域上的酉群结构,其阶数可能有特定的公式,比如在F_{q²}上的酉群U(n,q)的阶数是q^{n(n-1)/2}乘以(q+1)(q²-1)...(qⁿ - (-1)ⁿ),这可能是一个可能的计数公式。 但用户的问题可能需要更基础的答案,比如标准正交基的数量?或者在n维复空间中,酉变换的数量?不过酉群是一个李群,连续无穷的,但如果考虑有限域的情况,可能会有有限的数量,这时候计数公式才有意义。 可能用户混淆了“酉空间”和有限域上的酉群,或者是有限维复数空间中的某些结构数目? 需要进一步整理思路:首先解释酉空间的定义,然后讨论在有限域情况下可能的计数公式,比如有限域上酉群的阶数,或者标准正交基的数量,这可能使用高斯系数的类似物,或者涉及特定乘积公式。 例如,在有限域F_q²上,n维酉空间的酉群U(n,q)的阶数是乘积从k=1到n的(q^k - (-1)^k)。例如,U(1,q)的阶数是q+1,因为元素满足λ^q*λ=1,即λ^{q+1}=1,解的数量为q+1。 所以,可能的计数公式是对于n维酉空间上的酉群,其阶数为∏_{k=1}^n (q^k - (-1)^k)。这可能是用户所问的。 或者,如果是关于子空间的计数,例如在n维酉空间中,k维非退化子空间的数目,这样的公式可能与q-analog有关,但需要具体推导。 但用户的问题比较模糊,可能需要给出不同的可能性,并解释常见的计数情况,比如酉群的阶数,或者标准正交基的数量。 另外,可能需要提到在无限维的情况下,这种计数不适用,而有限域的情况才有具体的公式。所以,应该分情况讨论,并给出具体的公式表达式。 总结,可能的回答结构是:定义酉空间,讨论在有限域上的情况,给出酉群的阶数公式,并解释其推导思路,或者讨论子空间计数等。</think>酉空间(即复内积空间)的计数公式通常出现在有限域上的酉群(Unitary group)研究中。以下是关键概念的介绍: 1. **基本定义** - **酉空间**:在复数域ℂ上,配备正定埃尔米特内积的向量空间。 - **酉变换**:保持内积不变的线性变换,对应矩阵满足 $U^*U = I$($U^*$为共轭转置)。 2. **有限域上的酉群** 当考虑有限域 $\mathbb{F}_{q^2}$(q为素数幂)时,n维酉空间对应的**酉群**记为 $U(n,q)$,其阶数公式为: $$|U(n,q)| = q^{n(n-1)/2} \prod_{k=1}^n \left( q^k - (-1)^k \right)$$ **推导思路**: - 每个标准正交基向量需满足 $\langle v_i, v_j \rangle = \delta_{ij}$。 - 第一向量有 $q+1$ 种选择(满足 $v_1^*v_1=1$)。 - 后续向量需正交化,逐步减少自由度,最终得到乘积公式。 3. **子空间计数** 在n维酉空间中,k维非退化子空间的数量公式为: $$\frac{(q^n - (-1)^n)(q^{n-1} - (-1)^{n-1}) \cdots (q^{n-k+1} - (-1)^{n-k+1})}{(q^k - (-1)^k)(q^{k-1} - (-1)^{k-1}) \cdots (q - 1)}$$ 4. **应用场景** 此类公式在编码理论(如量子纠错码)、组合设计及群表示论中有重要应用,尤其在处理复结构对称性时。 **示例**: - $U(2,q)$ 的阶数为 $q(q^2-1)(q+1)$ - 当 $q=2$ 时,$U(2,2)$ 的阶数为 $2×(4-1)×3=18$,对应18个2×2酉矩阵。 注:无限维复酉空间无离散计数问题,上述公式仅适用于有限域情形。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值