比式判别法和根式判别法是基于把所要判断的级数与某一等比级数相比较的想法而得到的,也就是说, 只有那些级数的通项收敛于零的速度比某一等比级数收敛速度快的级数,这两种方法才能鉴定出它的收敛性.
如果级数的通项收敛速度较慢,它们就无能为力了.
因此为了获得判别范围更大的一类级数,就必须寻找级数的通项收敛于零较慢的级数作为比较标准.
以 p p p 级数为比较标准, 得到拉贝 (Raabe) 判别法, 现介绍如下:
定理 12.10 (拉贝判别法)
设 ∑ u n \sum u_{n} ∑un 为正项级数, 且存在某正整数 N 0 N_{0} N0 及常数 r r r,
(i) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
n ( 1 − u n + 1 u n ) ⩾ r > 1 , n\left(1-\frac{u_{n+1}}{u_{n}}\right) \geqslant r>1, n(1−unun+1)⩾r>1,
则级数 ∑ u n \sum u_{n} ∑un 收敛;
(ii) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
n ( 1 − u n + 1 u n ) ⩽ 1 , n\left(1-\frac{u_{n+1}}{u_{n}}\right) \leqslant 1, n(1−unun+1)⩽1,
则级数 ∑ u n \sum u_{n} ∑un 发散.
证
(i) 由 n ( 1 − u n + 1 u n ) ⩾ r n\left(1-\frac{u_{n+1}}{u_{n}}\right) \geqslant r n(1−unun+1)⩾r 可得 u n + 1 u n < 1 − r n \frac{u_{n+1}}{u_{n}}<1-\frac{r}{n} unun+1<1−nr. 选 p p p 使 1 < p < r 1<p<r 1<p<r. 由于
lim n → ∞ 1 − ( 1 − 1 n ) p r n = lim x → 0 1 − ( 1 − x ) p r x = lim x → 0 p ( 1 − x ) p − 1 r = p r < 1 , \lim \limits_{n \rightarrow \infty} \frac{1-\left(1-\frac{1}{n}\right)^{p}}{\frac{r}{n}}=\lim \limits_{x \rightarrow 0} \frac{1-(1-x)^{p}}{r x}=\lim \limits_{x \rightarrow 0} \frac{p(1-x)^{p-1}}{r}=\frac{p}{r}<1, n→∞limnr1−(1−n1)p=x→0lim