数学分析(十二)-数项级数2-正项级数-敛散性判别法5:拉贝判别法【注意:任何判别法都只能解决一类级数的收敛问题,而不能解决所有级数的收敛问题】

本文介绍了拉贝判别法,一种用于判断正项级数收敛性的方法。内容包括定理12.10的两个条件,以及推论中的极限形式。通过拉贝判别法,可以确定级数在不同条件下的收敛或发散状态,并通过示例说明其在比式判别法和根式判别法无法判断时的应用。然而,拉贝判别法也无法解决r=1的情况,强调了没有万能的级数收敛性判别法。
摘要由CSDN通过智能技术生成

比式判别法和根式判别法是基于把所要判断的级数与某一等比级数相比较的想法而得到的,也就是说, 只有那些级数的通项收敛于零的速度比某一等比级数收敛速度快的级数,这两种方法才能鉴定出它的收敛性.

如果级数的通项收敛速度较慢,它们就无能为力了.

因此为了获得判别范围更大的一类级数,就必须寻找级数的通项收敛于零较慢的级数作为比较标准.

p p p 级数为比较标准, 得到拉贝 (Raabe) 判别法, 现介绍如下:

定理 12.10 (拉贝判别法)

∑ u n \sum u_{n} un 为正项级数, 且存在某正整数 N 0 N_{0} N0 及常数 r r r,
(i) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
n ( 1 − u n + 1 u n ) ⩾ r > 1 , n\left(1-\frac{u_{n+1}}{u_{n}}\right) \geqslant r>1, n(1unun+1)r>1,
则级数 ∑ u n \sum u_{n} un 收敛;

(ii) 若对一切 n > N 0 n>N_{0} n>N0, 成立不等式
n ( 1 − u n + 1 u n ) ⩽ 1 , n\left(1-\frac{u_{n+1}}{u_{n}}\right) \leqslant 1, n(1unun+1)1,
则级数 ∑ u n \sum u_{n} un 发散.


(i) 由 n ( 1 − u n + 1 u n ) ⩾ r n\left(1-\frac{u_{n+1}}{u_{n}}\right) \geqslant r n(1unun+1)r 可得 u n + 1 u n < 1 − r n \frac{u_{n+1}}{u_{n}}<1-\frac{r}{n} unun+1<1nr. 选 p p p 使 1 < p < r 1<p<r 1<p<r. 由于

lim ⁡ n → ∞ 1 − ( 1 − 1 n ) p r n = lim ⁡ x → 0 1 − ( 1 − x ) p r x = lim ⁡ x → 0 p ( 1 − x ) p − 1 r = p r < 1 , \lim \limits_{n \rightarrow \infty} \frac{1-\left(1-\frac{1}{n}\right)^{p}}{\frac{r}{n}}=\lim \limits_{x \rightarrow 0} \frac{1-(1-x)^{p}}{r x}=\lim \limits_{x \rightarrow 0} \frac{p(1-x)^{p-1}}{r}=\frac{p}{r}<1, nlimnr1(1n1)p=x0lim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值