Karhunen-Loeve 展开理论详解及数值计算验证

Karhunen-Loeve 展开理论详解及数值计算验证
阵列协方差矩阵
K-L变换


前言

           \;\;\;\;\; Karhunen-Loeve 展开理论揭露了零均值平稳随机过程构成的随机向量为可以表示为协方差矩阵的归一化特征向量的线性组合。本文将介绍Karhunen-Loeve 展开理论及其证明,并通过MATLAB数值计算验证该理论。


提示:以下是本篇文章正文内容,尊重版权,引用请附上链接。

一、Karhunen-Loeve理论

           \;\;\;\;\; 设零均值平稳随机过程 u ( n ) \boldsymbol u(n) u(n) 构成的 M M M 维随机向量为 u ( n ) \boldsymbol u(n) u(n),相应的相关矩阵为 R \boldsymbol R R,则向量 u ( n ) \boldsymbol u(n) u(n) 可以表示为 R \boldsymbol R R 的归一化特征向量 q 1 , q 2 , ⋯   , q M \boldsymbol q_1,\boldsymbol q_2,\cdots,\boldsymbol q_M q1,q2,,qM 的线性组合,即
u ( n ) = ∑ i = 1 M c i q i \boldsymbol u(n)=\sum_{i=1}^{M}c_i\boldsymbol q_i \quad u(n)=i=1Mciqi 上式称为 u ( n ) \boldsymbol u(n) u(n) 的 Karhunen-Loeve 展开式。式中,展开式的系数 c i c_i ci 是由内积
c i = q i H u ( n ) , i = 1 , 2 , ⋯   , M c_i=\boldsymbol q_i^H\boldsymbol u(n), i=1,2,\cdots,M \quad ci=qiHu(n),i=1,2,,M 定义的随机变量,且有
E { c i } = 0 E\{c_i\}=0 \quad E{ci}=0 E { c i c i ∗ } = { λ i , i = l 0 , i ≠ l E\{c_ic_i^*\}=\begin{cases}\lambda_i, & i=l\\0, & i\ne l\end{cases} \quad E{cici}={λi,0,i=li=l
这两个求期望的式子说明了 M M M 个展开式的系数是互不相关的。下面给出该理论的证明:

           \;\;\;\;\; 对上面第一个式子两边左乘 q i H \boldsymbol q_i^{H} qiH,有
q i H u ( n ) = q i H ∑ k = 1 M c k q k = ∑ k = 1 M c k q i H q k          i = 1 , 2 , . . . , M \boldsymbol q_i^H\boldsymbol u(n)=\boldsymbol q_i^H \sum_{k=1}^M c_k \boldsymbol q_k = \sum_{k=1}^M c_k \boldsymbol q_i^H \boldsymbol q_k \;\;\;\; i=1,2,...,M qiHu(n)=qiHk=1Mckqk=k=1MckqiHqki=1,2,...,M 因为每个特征向量是相互正交的,即
q i H q j = { 1 , i = j 0 , i ≠ j \boldsymbol{q}_i^\mathrm{H}\boldsymbol{q}_j= \begin{cases} 1, & i=j \\ 0, & i\neq j & \end{cases} qiHqj={1,0,i=ji=j 所以可得
c i = q i H u ( n )          i = 1 , 2 , . . . , M c_i=\boldsymbol q_i^H\boldsymbol u(n)\;\;\;\; i=1,2,...,M ci=qiHu(n)i=1,2,...,M

因为随机过程 u ( n ) \boldsymbol u(n) u(n)的均值为零,所以,展开式系数 c i c_i ci 的均值也为零,而
E { c i c l ∗ } = E { q i H u ( n ) [ q l H u ( n ) ] ∗ } {E}\left\{{c}_{i} {c}_{l}^{*}\right\}={E}\left\{\boldsymbol{q}_{i}^{\mathrm{H}} \boldsymbol{u}(n)\left[\boldsymbol{q}_{l}^{\mathrm{H}} \boldsymbol{u}(n)\right]^{*}\right\} E{cicl}=E{qiHu(n)[qlHu(n)]} = E { q i H u ( n ) q l T u ∗ ( n ) } ={E}\left\{\boldsymbol{q}_{i}^{\mathrm{H}} \boldsymbol{u}(n) \boldsymbol{q}_{l}^{\mathrm{T}} \boldsymbol{u}^{*}(n)\right\} =E{qiHu(n)qlTu(n)} = E { q i H u ( n ) u H ( n ) q l } ={E}\left\{\boldsymbol{q}_{i}^{\mathrm{H}} \boldsymbol{u}(n) \boldsymbol{u}^{\mathrm{H}}(n) \boldsymbol{q}_{l}\right\} =E{qiHu(n)uH(n)ql} = q i H E { u ( n ) u H ( n ) } q l =\boldsymbol{q}_{i}^{\mathrm{H}} {E}\left\{\boldsymbol{u}(n) \boldsymbol{u}^{\mathrm{H}}(n)\right\} \boldsymbol{q}_{l} =qiHE{u(n)uH(n)}ql = q i H R q l =\boldsymbol{q}_{i}^{\mathrm{H}} \boldsymbol{R} \boldsymbol{q}_{l} =qiHRql = q i H ( Q Λ Q H ) q l =\boldsymbol{q}_{i}^{\mathrm{H}} (\boldsymbol Q \boldsymbol \Lambda \boldsymbol Q^H) \boldsymbol{q}_{l} =qiH(QΛQH)ql = q i H ( ∑ k = 1 M λ k q k q k H ) q l =\boldsymbol{q}_{i}^{\mathrm{H}} \left(\sum_{k=1}^{M}\lambda_k\mathbf{q}_k\mathbf{q}_k^\mathrm{H}\right)\mathbf{q}_l =qiH(k=1MλkqkqkH)ql = ∑ k = 1 M λ k ( q i H q k ) ( q k H q l ) =\sum_{k=1}^{M}\lambda_k\left(\mathbf{q}_i^\mathrm{H}\mathbf{q}_k\right)\left(\mathbf{q}_k^\mathrm{H}\mathbf{q}_l\right) =k=1Mλk(qiHqk)(qkHql) 还是因为每个特征向量是相互正交的,所以可得
E { c i c l ∗ } = { λ i , i = l 0 , i ≠ l {E}\left\{c_i c_l^*\right\}=\begin{cases}\lambda_i,&i=l\\0,&i\ne l\end{cases} E{cicl}={λi,0,i=li=l M M M个展开系数 c i ( i = 1 , 2 , ⋯   , M ) c_i(i=1,2,\cdots,M) ci(i=1,2,,M)是互不相关的。

二、MATLAB数值计算验证

X=[0.380188080394221 - 4.80840311889913i	9.01551306016066 + 0.474820176721600i	2.53030874185729 + 5.06631990869671i	-9.57942898970697 + 0.207798507181289i;
-2.94127326680851 + 3.04821010362689i	-4.63345556903917 - 8.74361015253802i	6.19631350044581 - 1.26319637948518i	4.22597245751495 + 8.50562221561771i;
2.02429128417927 + 3.89703975446236i	-5.70306616729806 + 7.24328167972610i	-4.57605142647674 - 2.38671650483973i	6.71173689323794 - 7.12184092779286i;
1.61341350166245 - 3.55712443803114i	8.72723450691701 + 3.01639248844176i	1.14225006315341 + 4.34466566820764i	-9.89689368176315 - 2.96251859167862i]
Rx=X*X'/4        % 估计协方差矩阵
[evector,evalue]=eig(Rx); % 特征值分解
u=X(:,1)
ci=evector'*u;
evector*ci

运行以上代码得到下图所示结果:
在这里插入图片描述可见u和ans的结果一模一样,成功验证了Karhunen-Loeve 展开理论。


总结

           \;\;\;\;\; 以上就是今天要讲的内容,本文介绍了Karhunen-Loeve 展开理论及其证明,并通过MATLAB数值计算验证了该理论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迎风打盹儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值