模型微调方法LoRA

简介:个人学习分享,如有错误,欢迎批评指正。

在近年来,随着大型语言模型(如GPT-3、GPT-4等)的迅速发展,如何高效、经济地微调这些模型以适应特定任务成为了一个重要的研究方向。Low-Rank Adaptation(低秩适配,简称LoRA)是一种创新的方法,旨在通过低秩矩阵分解技术高效地微调大型语言模型。

一、背景与动机

1. 大型语言模型的发展

大型语言模型凭借其在自然语言处理任务中的卓越表现,广泛应用于文本生成、翻译、问答系统等领域。然而,这些模型通常拥有数十亿甚至上千亿的参数,导致以下问题:

  • 高昂的计算成本:训练和微调这些模型需要大量的计算资源,导致计算成本高。
  • 存储需求巨大:每个微调任务需要存储一份完整的模型参数,导致存储成本高昂。
  • 微调效率低:针对不同任务分别微调模型,缺乏共享机制,降低了效率。

2. 微调方法的发展

为了解决上述问题,研究者提出了多种微调方法,包括:

  • 全参数微调(Full Fine-Tuning):调整模型的所有参数,适应性强但成本高。
  • 冻结部分参数:只微调部分参数,降低计算和存储成本,但可能限制模型的适应能力。
  • 参数高效微调(Parameter-Efficient Fine-Tuning, PEFT):通过引入少量可训练参数,实现高效微调。LoRA 即为其中一种典型方法。

二、LoRA的具体实现步骤

在这里插入图片描述

1. 确定适配层

在大型语言模型(如 Transformer 架构)中,LoRA 通常应用于关键的权重矩阵,如自注意力机制中的查询(Query)、键(Key)、值(Value)矩阵以及前馈网络中的权重矩阵。这些权重矩阵通常是大型的线性变换矩阵,适合进行低秩分解

2. 插入低秩适配模块

对于每个需要适配的权重矩阵 W W W,LoRA 通过插入两个新的可训练矩阵 A A A B B B 来表示权重的更新:

W ′ = W + Δ W = W + A ⋅ B W' = W + \Delta W = W + A \cdot B W=W+ΔW=W+AB

其中,原始权重 W W W 保持冻结,不参与训练。只有 A A A B B B 参与训练,从而实现参数高效的微调。

3. 参数初始化

  • 矩阵 A A A 的初始化:通常采用随机初始化,使用小的随机值(如从标准正态分布中采样并乘以一个缩放因子),以确保初始的 Δ W \Delta W ΔW 对模型输出的影响较小。
  • 矩阵 B B B 的初始化:通常初始化为零矩阵,这样初始的 Δ W = A ⋅ B = 0 \Delta W = A \cdot B = 0 ΔW=AB=0确保初始模型行为与原始模型一致

4. 训练过程

在微调过程中,只有矩阵 A A A B B B 是可训练的参数。训练目标仍然是最小化任务特定的损失函数,但优化器只更新 A A A B B B,保持 W W W 不变。

训练步骤如下:

  1. 前向传播:计算 W ′ = W + A ⋅ B W' = W + A \cdot B W=W+AB,并使用 W ′ W' W 进行前向传播。
  2. 损失计算:根据任务目标计算损失。
  3. 反向传播:仅计算 A A A B B B 的梯度。
  4. 参数更新:使用优化器更新 A A A B B B

5. 推理阶段

在推理阶段,使用微调后的权重 W ′ = W + A ⋅ B W' = W + A \cdot B W=W+AB 进行计算。由于 W W W 是冻结的,只需要存储 A A A B B B 即可,不需要额外的计算开销。

三、LoRA在Transformer中的集成

Transformer 架构是目前大型语言模型的主流架构,LoRA 主要针对 Transformer 中的线性层进行适配。以下以 Transformer 的自注意力机制为例,说明 LoRA 的集成方式。

1. 自注意力机制中的权重矩阵

在自注意力机制中,有三个主要的权重矩阵:查询矩阵 W Q W_Q WQ、键矩阵 W K W_K WK 和值矩阵 W V W_V WV。这些矩阵用于计算注意力得分和加权输出。

2. 应用 LoRA

对于每个权重矩阵 W W W(即 W Q , W K , W V W_Q, W_K, W_V WQ,WK,WV),LoRA 引入两个低秩矩阵 A A A B B B,并将其更新添加到原始权重上:

W q ′ = W q + A q ⋅ B q W'_q = W_q + A_q \cdot B_q Wq=Wq+AqBq

W k ′ = W k + A k ⋅ B k W'_k = W_k + A_k \cdot B_k Wk=Wk+AkBk

W v ′ = W v + A v ⋅ B v W'_v = W_v + A_v \cdot B_v Wv=Wv+AvBv

其中, A q , B q , A k , B k , A v , B v A_q, B_q, A_k, B_k, A_v, B_v Aq,Bq,Ak,Bk,Av,Bv 分别对应于查询、键和值的适配矩阵。

3. 前馈网络中的适配

同样地,Transformer 的前馈网络中的权重矩阵(如 W 1 W_1 W1 W 2 W_2 W2)也可以应用 LoRA 进行适配:

W 1 ′ = W 1 + A W 1 ⋅ B W 1 W'_1 = W_1 + A_{W1} \cdot B_{W1} W1=W1+AW1BW1

W 2 ′ = W 2 + A W 2 ⋅ B W 2 W'_2 = W_2 + A_{W2} \cdot B_{W2} W2=W2+AW2BW2

通过这种方式,整个 Transformer 层的关键权重矩阵都得到了高效的适配。

四、LoRA的数学基础详解

1. 矩阵的秩与低秩分解

1.1 矩阵的秩(Rank of a Matrix)

<

### 使用LoRA方法进行模型微调 #### 背景介绍 为了提升特定任务的表现,可以采用低秩适应(Low-Rank Adaptation, LoRA)来调整大型预训练模型。这种方法特别适用于Transformer架构下的自注意力机制部分[^1]。 #### 实现细节 具体来说,在应用LoRA时会集中于transformer结构里的query、key以及value投影层。这些位置被选作插入额外学习组件的地方。通过这种方式,可以在不改变原有网络参数的情况下增强其性能表现[^2]。 #### 微调过程概述 当利用LoRA对像Qwen这样的大规模语言模型实施精细化调节时,主要操作如下: - **初始化**:加载预先训练好的基础模型作为起点; - **配置LoRA模块**:针对选定的目标子网创建并连接相应的低秩分解矩阵; - **冻结原生权重**:除了新增加的部分外,其余所有先前已有的权值都将固定不动; - **定义优化器与损失函数**:指定用于指导新加入变量迭代更新规则及其评判标准; - **执行反向传播算法**:依据给定数据集反复修正那些专门设计用来改进特定制约条件下效能的新参量; - **保存最终版本**:完成整个流程之后存储经过改良后的整体体系以便后续部署或进一步研究使用。 ```python from peft import LoraConfig, get_peft_model import transformers model_name_or_path = "Qwen" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path) lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", ) peft_model = get_peft_model(transformers.AutoModelForCausalLM.from_pretrained(model_name_or_path), lora_config) # 假设已经准备好了一个PyTorch DataLoader对象train_dataloader for epoch in range(num_epochs): for batch in train_dataloader: outputs = peft_model(**batch) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() peft_model.save_pretrained("./fine-tuned-qwen-lora") ``` 此代码片段展示了如何基于Hugging Face Transformers库和PEFT工具包快速设置一个带有LoRA支持的大规模语言模型实例,并对其进行简单训练的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值