摘要:扩散模型在超分辨率(SR)任务中能够生成高质量的视觉结果,但其计算成本高昂。尽管已经开发了多种方法来加速基于扩散的超分辨率模型,但其中一些方法(例如SinSR)无法生成逼真的感知细节,而其他方法(例如OSEDiff)可能会生成不存在的结构。为了克服这些问题,我们提出了RSD,这是一种针对ResShift(一种顶尖的基于扩散的超分辨率模型)的新型蒸馏方法。我们的方法基于训练学生网络,使其生成这样的图像:在这些图像上训练的新伪ResShift模型将与教师模型一致。RSD实现了单步恢复,并且在很大程度上超越了教师模型的性能。我们表明,我们的蒸馏方法可以超越其他基于蒸馏的ResShift方法(如SinSR),使其与最先进的基于扩散的超分辨率蒸馏方法相媲美。与基于预训练文本到图像模型的超分辨率方法相比,RSD生成的图像感知质量具有竞争力,与退化输入图像的对齐程度更高,并且所需的参数和GPU内存更少。我们在多个真实世界和合成数据集上提供了实验结果,包括RealSR、RealSet65、DRealSR、ImageNet和DIV2K。Huggingface链接:Paper page,论文链接:2503.13358
研究背景和目的
研究背景
图像超分辨率(SR)是计算机视觉领域中的一个重要问题,旨在从低分辨率(LR)图像恢复出高分辨率(HR)图像。传统的图像超分辨率方法往往依赖于插值、重建等算法,但这些方法在处理复杂场景和纹理时效果有限。随着深度学习技术的发展,基于卷积神经网络(CNN)的方法在图像超分辨率任务上取得了显著进展。然而,这些方法通常需要大量的计算资源和训练数据,并且可能产生不真实的感知细节或生成不存在的结构。
近年来,扩散模型(Diffusion Models)作为一种生成模型,因其能够生成高质量的图像而受到广泛关注。扩散模型通过逐步添加噪声到图像中,然后通过反向过程逐步去除噪声来恢复图像。这种方法在图像超分辨率任务上也表现出了良好的性能,但通常需要大量的推理步骤(NFE),导致计算成本高昂。为了加速扩散模型的推理过程,研究者们提出了多种加速方法,如知识蒸馏、变分分数蒸馏等。然而,这些方法要么在感知质量上有所妥协,要么仍然需要较多的计算资源。
研究目的
本文旨在提出一种新颖的知识蒸馏方法,即残差转移蒸馏(RSD),用于加速基于扩散模型的图像超分辨率方法。具体来说,本文的研究目的包括:
- 提出一种高效的蒸馏方法:通过训练学生网络,使其能够在单步推理中生成与教师网络相似的图像,从而实现扩散模型的加速。
- 提升感知质量:相比于现有的蒸馏方法,本文提出的方法能够在保持计算效率的同时,提升生成图像的感知质量。
- 减少计算资源需求:通过减少推理步骤和模型参数,降低对计算资源的需求,使得扩散模型能够在更广泛的设备上应用。
- 构建全面的评估基准:为了全面评估不同方法的性能,本文构建了包含真实世界和合成数据集的评估基准。
研究方法
模型架构
本文基于ResShift模型,这是一种高效的扩散模型,用于图像超分辨率任务。ResShift模型通过残差转移的方式,在较少的推理步骤内实现了高质量的图像恢复。然而,ResShift模型仍然需要较多的计算资源。为了加速ResShift模型,本文提出了RSD方法。
RSD方法的核心思想是通过训练一个学生网络,使其能够在单步推理中生成与教师网络(ResShift模型)相似的图像。学生网络采用编码器-解码器架构,其中编码器用于提取低分辨率图像的特征,解码器用于生成高分辨率图像。为了指导学生网络的训练,我们引入了一个“假”的ResShift模型,该模型通过在学生网络生成的图像上进行训练,以逼近真实的ResShift模型。
训练方法
RSD方法的训练过程包括以下几个步骤:
-
视觉预训练:首先,我们对视觉编码器进行预训练,使其能够提取图像的有效特征。这一步骤使用大规模的图像数据集进行训练。
-
知识蒸馏:接下来,我们进行知识蒸馏训练。在这一阶段,我们固定视觉编码器的参数,仅训练学生网络的解码器。我们通过最小化学生网络生成的图像与“假”ResShift模型生成的图像之间的差异来优化学生网络。
-
多任务训练:为了进一步提升学生网络的性能,我们引入了多任务训练。除了知识蒸馏损失外,我们还添加了感知损失(如LPIPS损失)和对抗损失(如GAN损失),以帮助学生网络生成更真实、更高质量的图像。
-
潜在空间转换:为了提高训练效率,我们将损失函数从图像空间转换到潜在空间。这样,我们可以在较低维度的空间中进行计算,从而减少计算量。
数据集和评估指标
为了全面评估RSD方法的性能,我们构建了包含真实世界和合成数据集的评估基准。具体来说,我们使用了RealSR、RealSet65、ImageNet、DIV2K等数据集。在评估指标方面,我们采用了PSNR、SSIM、LPIPS、CLIPIQA、MUSIQ等多种指标,以全面衡量生成图像的质量。
研究结果
定量评估
通过定量评估,我们发现RSD方法在多个数据集和评估指标上均取得了显著的性能提升。特别是在感知质量方面,RSD方法生成的图像在LPIPS、CLIPIQA、MUSIQ等指标上均优于现有的蒸馏方法(如SinSR)和基于文本到图像(T2I)的SR方法(如OSEDiff)。同时,RSD方法在保持计算效率的同时,也达到了与ResShift模型相当的保真度(如PSNR、SSIM等指标)。
定性评估
通过定性评估,我们发现RSD方法生成的图像在视觉上更加真实、自然。与现有的蒸馏方法和T2I-based SR方法相比,RSD方法生成的图像在细节保留、纹理恢复等方面表现更好。特别是在处理真实世界图像时,RSD方法能够生成与低分辨率图像高度一致的高分辨率图像。
研究局限
尽管RSD方法在图像超分辨率任务上取得了显著的性能提升,但仍存在一些局限性:
-
教师模型的限制:RSD方法的性能受限于教师模型(ResShift模型)的性能。如果教师模型的性能不够好,那么学生网络的学习效果也会受到影响。
-
数据集的局限性:尽管我们构建了包含真实世界和合成数据集的评估基准,但这些数据集可能仍然无法完全覆盖图像超分辨率任务的复杂性和多样性。因此,在未来的研究中,我们需要进一步扩展和丰富数据集。
-
模型复杂度的限制:尽管RSD方法能够在保持计算效率的同时提升感知质量,但其模型复杂度仍然较高。在未来的研究中,我们需要进一步探索更轻量级的模型架构,以降低对计算资源的需求。
未来研究方向
为了推动图像超分辨率技术的发展,我们需要从以下几个方面进行深入研究:
-
开发更高效的教师模型:研究更高效、更强大的扩散模型作为教师模型,以提升学生网络的学习效果。
-
构建更全面的数据集:进一步扩展和丰富数据集,以涵盖更多图像超分辨率任务的复杂性和多样性。这将有助于提高模型的泛化能力和鲁棒性。
-
探索更轻量级的模型架构:研究更轻量级的模型架构,以降低对计算资源的需求。这将有助于推动图像超分辨率技术在更广泛的设备上的应用。
-
结合其他技术:探索将图像超分辨率技术与其他技术(如图像增强、图像修复等)相结合的可能性,以提升整体性能。
总之,本文提出的RSD方法为加速基于扩散模型的图像超分辨率方法提供了一种新的思路。通过未来的深入研究和技术创新,我们有望进一步提升图像超分辨率技术的性能和效率,为计算机视觉领域的发展做出更大的贡献。