QAT 量化感知训练流程

QAT

Quantization-Aware Training(QAT,量化感知训练)是一种训练深度学习模型的方法,它在训练过程中模拟量化的影响,以便最终部署到低精度硬件(如 INT8 计算)时仍能保持较好的精度。

QAT 训练流程:

1. 预训练(Pre-training)

  • 先用**全精度(FP32)**训练模型,使其收敛并获得较好的性能。
  • 此阶段的目标是获得一个基础模型,为后续的量化训练做准备。

2. 插入量化运算(Quantization Simulation)

  • 在前向传播(Forward Pass)时,模拟量化计算
    • 权重(Weights)激活值(Activations)在训练过程中模拟转换为 INT8(但仍以 FP32 进行梯度计算)。
    • 例如,PyTorch 的 torch.quantization.FakeQuantize 通过模拟量化噪声,确保训练过程考虑低精度计算的影响。
  • 这一步骤的核心是使用Fake Quantization
    • 仍然使用 FP32 进行计算,但插入一个**量化-反量化(Quant-Dequant)**的仿真模块: 

    • 这可以让模型在训练过程中适应 I
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值