QAT
Quantization-Aware Training(QAT,量化感知训练)是一种训练深度学习模型的方法,它在训练过程中模拟量化的影响,以便最终部署到低精度硬件(如 INT8 计算)时仍能保持较好的精度。
QAT 训练流程:
1. 预训练(Pre-training)
- 先用**全精度(FP32)**训练模型,使其收敛并获得较好的性能。
- 此阶段的目标是获得一个基础模型,为后续的量化训练做准备。
2. 插入量化运算(Quantization Simulation)
- 在前向传播(Forward Pass)时,模拟量化计算:
- 将权重(Weights)和激活值(Activations)在训练过程中模拟转换为 INT8(但仍以 FP32 进行梯度计算)。
- 例如,PyTorch 的
torch.quantization.FakeQuantize通过模拟量化噪声,确保训练过程考虑低精度计算的影响。
- 这一步骤的核心是使用Fake Quantization:
- 仍然使用 FP32 进行计算,但插入一个**量化-反量化(Quant-Dequant)**的仿真模块:
![]()
-
- 这可以让模型在训练过程中适应 I

最低0.47元/天 解锁文章
1008

被折叠的 条评论
为什么被折叠?



