目录
六、数据篇
本篇来介绍一下量化交易里有哪些常见的金融数据源模块。
1、Tu-share
下载:pip install Tu-share
TuShare 是一个开源的 Python 库,主要用于方便地获取和处理中国市场的金融数据。它提供了丰富的接口,支持从各种数据源获取数据,包括股票、期货、外汇、债券、基金等,并且可以进行数据清洗、转换和分析。
TuShare 的特点包括:
-
数据源广泛:支持从多个金融数据提供商获取数据,如新浪财经、同花顺、雪球等。
-
接口丰富:提供了一系列的接口,用于获取实时行情、历史数据、财务报表等。
-
数据处理:内置了数据清洗和转换的工具,方便用户对数据进行预处理。
-
图表绘制:支持直接绘制 K 线图、柱状图、饼图等基本图表。
-
接口文档:提供了详细的 API 文档和示例代码,帮助用户了解如何使用。
-
社区支持:有一个活跃的社区,用户可以分享代码、讨论问题和提供反馈。Tushare数据
https://tushare.pro/document/2Tushare -财经数据接口包
http://tushare.org/
2、yfinance
下载:pip install yfinance
yfinance
是一个 Python 库,专门用于从 Yahoo Finance 获取股票市场数据。这个库非常适合进行股票价格和历史数据的分析,以及简单的财务数据操作。yfinance
库提供了一些基本的功能,如获取股票价格、财务报表、交易数据等,并且可以轻松地处理和分析这些数据。
以下是 yfinance
的一些主要特点:
-
简单易用:
yfinance
的接口设计简洁直观,使得用户可以轻松地开始提取和分析股票数据。 -
实时数据:库支持实时数据获取,用户可以获取最新的股票价格和交易信息。
-
历史数据:用户可以轻松地获取股票的历史价格数据,包括分钟级、日级、周级和月级数据。
-
财务报表:可以下载和查看公司的财务报表,如资产负债表、利润表和现金流量表。
-
数据转换:库提供了基本的 dataframe 操作,允许用户对数据进行清洗和转换。
-
图表绘制:与
matplotlib
等图表库结合使用,可以方便地绘制股票价格图表和其他财务图表。Yfinance Hengelohttps://yfinance.nl/
3、Quandl
下载:pip install Quandl
Quandl是一个提供金融、经济和替代数据的平台,它收集、整理和分发来自各种来源的数据。Quandl库是一个Python库,可以用于方便地访问和使用Quandl平台上的数据。以下是Quandl库的一些主要特点和用途:
-
数据访问:Quandl库提供了简单而强大的接口,让用户可以轻松地从Quandl平台上获取各种类型的数据,包括股票价格、经济指标、商品价格等。
-
数据整合:Quandl库允许用户从多个数据源中检索数据,并以统一的格式返回结果。这使得用户可以方便地整合来自不同来源的数据,并进行分析和处理。
-
数据分析:Quandl库提供了丰富的功能和工具,支持用户对获取的数据进行各种类型的分析和计算。用户可以使用Python中常用的数据分析库(如Pandas、NumPy等)与Quandl库结合,进行数据可视化、统计分析等操作。
-
实时数据:Quandl库提供了对实时数据的支持,使用户可以获取最新的市场数据并及时进行分析和决策。
-
简便易用:Quandl库的接口设计简单易用,使得用户无需深入了解数据源的细节即可快速上手,并开始获取和分析数据。https://data.nasdaq.com/institutional-investors
https://data.nasdaq.com/institutional-investors
4、alpha-vantage
下载:pip install alpha-vantage
Alpha Vantage 是一个提供免费 API 的平台,用于获取实时的股票市场数据以及其他金融、经济和替代数据。它广泛用于开发者、研究人员和交易员将股票市场数据集成到他们的应用程序、模型或分析中。
Alpha Vantage 提供了多种 API,涵盖了金融数据的不同方面,例如:
- 股票市场数据:实时的股票报价、日内和历史数据、技术指标和股票基本面。
- 外汇数据:实时的外汇报价、日内和历史数据。
- 指数数据:全球股票市场指数的数据。
- 经济日历:即将发生的重要经济事件和数据发布日期。
- 替代数据:如情绪分析、天气数据、社交媒体趋势等。
要使用 Alpha Vantage 的 API,通常需要注册一个账户以获取 API 密钥(也称为访问令牌或密钥),用于身份验证和访问数据。然后,可以使用 Python、Java、JavaScript 等编程语言通过 HTTP 请求发送到 Alpha Vantage API 的 URL 来集成 API。
5、DataYes
DataYes 是一个提供数据接口服务的平台,它主要面向需要数据的开发者、企业或研究人员,提供高质量的数据接口。DataYes 的数据接口通常涵盖了各种数据源,如公共数据、商业数据、社交媒体数据等,这些数据接口可以帮助用户获取所需的数据,进行分析和应用开发。
DataYes 平台的数据接口通常具有以下特点:
-
多样性: DataYes 提供了多种类型的数据接口,包括API接口、Web服务、数据库接口等,以满足不同用户的需求。
-
高质量: DataYes 对提供的数据接口进行了严格的质量控制,确保数据的准确性和稳定性。
-
易用性: DataYes 的数据接口通常具有良好的文档和示例,用户可以快速上手和使用。
-
安全性: DataYes 重视用户数据的安全性,提供了多种安全机制,如身份验证、数据加密等,以保护用户的数据和隐私。
-
灵活性: DataYes 的数据接口通常支持多种数据格式,如JSON、XML、CSV等,用户可以根据自己的需求选择合适的数据格式。null
https://mall.datayes.com/
6、qstock
下载:pip install qstock
qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。
其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据,数据爬虫部分参考了现有金融数据包tushare、akshare和efinance。qstock致力于为用户提供更加简洁和规整化的金融市场数据接口。可视化模块基于plotly.express和pyecharts包,为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。
qstock目前在pypi官网上发布,开源版本为1.1.0,意味着读者直接“pip install qstock ”安装即可使用。GitHub - tkfy920/qstock: qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。 - GitHub - tkfy920/qstock: qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。https://github.com/tkfy920/qstock