量化交易常用名词介绍(六)——数据篇

目录

六、数据篇

1、Tu-share

2、yfinance

3、Quandl

4、alpha-vantage

5、DataYes

6、qstock


六、数据篇

        本篇来介绍一下量化交易里有哪些常见的金融数据源模块。

1、Tu-share

下载:pip install Tu-share

        TuShare 是一个开源的 Python 库,主要用于方便地获取和处理中国市场的金融数据。它提供了丰富的接口,支持从各种数据源获取数据,包括股票、期货、外汇、债券、基金等,并且可以进行数据清洗、转换和分析。

TuShare 的特点包括:

  1. 数据源广泛:支持从多个金融数据提供商获取数据,如新浪财经、同花顺、雪球等。

  2. 接口丰富:提供了一系列的接口,用于获取实时行情、历史数据、财务报表等。

  3. 数据处理:内置了数据清洗和转换的工具,方便用户对数据进行预处理。

  4. 图表绘制:支持直接绘制 K 线图、柱状图、饼图等基本图表。

  5. 接口文档:提供了详细的 API 文档和示例代码,帮助用户了解如何使用。

  6. 社区支持:有一个活跃的社区,用户可以分享代码、讨论问题和提供反馈。Tushare数据icon-default.png?t=N7T8https://tushare.pro/document/2Tushare -财经数据接口包icon-default.png?t=N7T8http://tushare.org/

2、yfinance

下载:pip install yfinance

   yfinance 是一个 Python 库,专门用于从 Yahoo Finance 获取股票市场数据。这个库非常适合进行股票价格和历史数据的分析,以及简单的财务数据操作。yfinance 库提供了一些基本的功能,如获取股票价格、财务报表、交易数据等,并且可以轻松地处理和分析这些数据。

以下是 yfinance 的一些主要特点:

  1. 简单易用yfinance 的接口设计简洁直观,使得用户可以轻松地开始提取和分析股票数据。

  2. 实时数据:库支持实时数据获取,用户可以获取最新的股票价格和交易信息。

  3. 历史数据:用户可以轻松地获取股票的历史价格数据,包括分钟级、日级、周级和月级数据。

  4. 财务报表:可以下载和查看公司的财务报表,如资产负债表、利润表和现金流量表。

  5. 数据转换:库提供了基本的 dataframe 操作,允许用户对数据进行清洗和转换。

  6. 图表绘制:与 matplotlib 等图表库结合使用,可以方便地绘制股票价格图表和其他财务图表。Yfinance Hengeloicon-default.png?t=N7T8https://yfinance.nl/

3、Quandl

下载:pip install Quandl

        Quandl是一个提供金融、经济和替代数据的平台,它收集、整理和分发来自各种来源的数据。Quandl库是一个Python库,可以用于方便地访问和使用Quandl平台上的数据。以下是Quandl库的一些主要特点和用途:

  1. 数据访问:Quandl库提供了简单而强大的接口,让用户可以轻松地从Quandl平台上获取各种类型的数据,包括股票价格、经济指标、商品价格等。

  2. 数据整合:Quandl库允许用户从多个数据源中检索数据,并以统一的格式返回结果。这使得用户可以方便地整合来自不同来源的数据,并进行分析和处理。

  3. 数据分析:Quandl库提供了丰富的功能和工具,支持用户对获取的数据进行各种类型的分析和计算。用户可以使用Python中常用的数据分析库(如Pandas、NumPy等)与Quandl库结合,进行数据可视化、统计分析等操作。

  4. 实时数据:Quandl库提供了对实时数据的支持,使用户可以获取最新的市场数据并及时进行分析和决策。

  5. 简便易用:Quandl库的接口设计简单易用,使得用户无需深入了解数据源的细节即可快速上手,并开始获取和分析数据。https://data.nasdaq.com/institutional-investorsicon-default.png?t=N7T8https://data.nasdaq.com/institutional-investors​​​​​​​​​​​​​​​​​​​

4、alpha-vantage

下载:pip install alpha-vantage

        Alpha Vantage 是一个提供免费 API 的平台,用于获取实时的股票市场数据以及其他金融、经济和替代数据。它广泛用于开发者、研究人员和交易员将股票市场数据集成到他们的应用程序、模型或分析中。

Alpha Vantage 提供了多种 API,涵盖了金融数据的不同方面,例如:

  • 股票市场数据:实时的股票报价、日内和历史数据、技术指标和股票基本面。
  • 外汇数据:实时的外汇报价、日内和历史数据。
  • 指数数据:全球股票市场指数的数据。
  • 经济日历:即将发生的重要经济事件和数据发布日期。
  • 替代数据:如情绪分析、天气数据、社交媒体趋势等。

        要使用 Alpha Vantage 的 API,通常需要注册一个账户以获取 API 密钥(也称为访问令牌或密钥),用于身份验证和访问数据。然后,可以使用 Python、Java、JavaScript 等编程语言通过 HTTP 请求发送到 Alpha Vantage API 的 URL 来集成 API。

Free Stock APIs in JSON & Excel | Alpha VantageAlpha Vantage offers free stock APIs in JSON and CSV formats for realtime and historical stock market data, forex, commodity, cryptocurrency feeds and over 50 technical indicators. Global market news API and sentiment scores powered by AI and machine learning. Supports intraday, daily, weekly, and monthly quotes and technical analysis with chart-ready time series.icon-default.png?t=N7T8https://www.alphavantage.co/

5、DataYes

        DataYes 是一个提供数据接口服务的平台,它主要面向需要数据的开发者、企业或研究人员,提供高质量的数据接口。DataYes 的数据接口通常涵盖了各种数据源,如公共数据、商业数据、社交媒体数据等,这些数据接口可以帮助用户获取所需的数据,进行分析和应用开发。

DataYes 平台的数据接口通常具有以下特点:

  1. 多样性: DataYes 提供了多种类型的数据接口,包括API接口、Web服务、数据库接口等,以满足不同用户的需求。

  2. 高质量: DataYes 对提供的数据接口进行了严格的质量控制,确保数据的准确性和稳定性。

  3. 易用性: DataYes 的数据接口通常具有良好的文档和示例,用户可以快速上手和使用。

  4. 安全性: DataYes 重视用户数据的安全性,提供了多种安全机制,如身份验证、数据加密等,以保护用户的数据和隐私。

  5. 灵活性: DataYes 的数据接口通常支持多种数据格式,如JSON、XML、CSV等,用户可以根据自己的需求选择合适的数据格式。nullicon-default.png?t=N7T8https://mall.datayes.com/

6、qstock

下载:pip install qstock

        qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。

        其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据,数据爬虫部分参考了现有金融数据包tushare、akshare和efinance。qstock致力于为用户提供更加简洁和规整化的金融市场数据接口。可视化模块基于plotly.express和pyecharts包,为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。
        qstock目前在pypi官网上发布,开源版本为1.1.0,意味着读者直接“pip install qstock ”安装即可使用。​​​​​​​GitHub - tkfy920/qstock: qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。 - GitHub - tkfy920/qstock: qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析包,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(策略backtest)模块。 qstock将为用户提供简洁的数据接口和规整化后的金融市场数据。可视化模块为用户提供基于web的交互图形的简单接口; 选股模块提供了同花顺的选股数据和自定义选股,包括RPS、MM趋势、财务指标、资金流模型等; 回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。 关注“Python金融量化“微信公众号,获取更多应用信息。icon-default.png?t=N7T8https://github.com/tkfy920/qstock

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值