YOLOv5改进 | 主干网络 | 在backbone添加Swin-Transformer层【论文必备】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

尽管Ultralytics 推出了最新版本的 YOLOv8 模型。但YOLOv5作为一个anchor base的目标检测的算法,YOLOv5可能比YOLOv8的效果更好。注意力机制是提高模型性能最热门的方法之一,本文给大家带来的教程是添加Swin-Transformer到backbone中。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。


专栏地址YOLOv5改进+入门——持续更新各种有效涨点方法 

目录

1.原理

2.Swin-Transformer代码

2.1 添加Swin-Transformer代码

2.2 新增yaml文件

2.3 注册模块

2.4 执行程序

3. 完整代码 

 4.总结


 1.原理

论文地址:Swin-Transformer点击即可跳转

官方代码:Swin-Transformer官方代码仓库点击即可跳转

Swin-Transformer是MRA的作品,而MRA撑起了深度学习的半边天。

Swin-Transformer是2021年微软研究院发表在ICCV上的一篇文章,并且已经获得ICCV 2021 best paper 的荣誉称号。Swin Transformer网络是Transformer模型在视觉领域的又一次碰撞。该论文一经发表就已在多项视觉任务中霸榜。

Swin Transformer使用了类似卷积神经网络中的层次化构建方法(Hierarchical feature maps),比如特征图尺寸中有对图像下采样4倍的,8倍的以及16倍的,这样的backbone有助于在此基础上构建目标检测,实例分割等任务。而在之前的Vision Transformer中是一开始就直接下采样16倍,后面的特征图也是维持这个下采样率不变。

在Swin Transformer中使用了Windows Multi-Head Self-Attention(W-MSA)的概念,比如在下图的4倍下采样和8倍下采样中,将特征图划分成了多个不相交的区域(Window),并且Multi-Head Self-Attention只在每个窗口(Window)内进行。相对于Vision Transformer中直接对整个特征图进行Multi-Head Self-Attention,这样做的目的是能够减少计算量的,尤其是在浅层特征图很大的时候。这样做虽然减少了计算量但也会隔绝不同窗口之间的信息传递,所以在论文中作者又提出了 Shifted Windows Multi-Head Self-Attention(SW-MSA)的概念,通过此方法能够让信息在相邻的窗口中进行传递。

因此,Swin-Transformer在计算效率上相对于传统的 Transformer 架构具有优势。Swin Transformer 是一种高效且性能优越的深度学习模型,适用于图像分类、目标检测等视觉任务,并且在处理大规模图像数据时表现出色。

注意:因为涉及代码较多,比较冗长,因此在此处不在放置完整代码,只放关键代码,完整代码可以查看文章末尾的内容。

2.Swin-Transformer代码

2.1 添加Swin-Transformer代码

关键步骤一:在\yolov5-6.1\models\common.py中添加下面代码

class SwinStage(nn.Module):

    def __init__(self, dim, c2, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, use_checkpoint=False):
        super().__init__()
        assert dim==c2, r"no. in/out channel should be same"
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])


    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
        # [nW, Mh*Mw, Mh*Mw]
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask

    def forward(self, x):
        B, C, H, W = x.shape
        x = x.permute(0, 2, 3, 1).contiguous().view(B, H*W, C)
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)

        x = x.view(B, H, W, C)
        x = x.permute(0, 3, 1, 2).contiguous()

        return x

Swin-Transformer模型处理流程主要包括以下几个步骤:

1. 图像分割和块划分:将输入图像分割成多个块,每个块都会被送入模型进行处理。

2. 块级特征提取:每个块经过块级特征提取阶段,使用局部注意力机制和全局注意力机制提取块级特征。

3. 块级特征整合:整合来自不同块的特征,通过跨块注意力机制实现特征的交互和整合。

4. 多层交叉处理:通过多层的交叉处理,增强模型对图像特征的表示能力。

5. 特征重组:将整合后的特征重新组合成全局特征表示。

6. 分类/回归:利用全局特征表示进行图像分类或其他任务,如对象检测或语义分割。

整个流程利用了局部和全局的位置信息,有效地捕获了图像中的不同位置和层次的信息,从而提高了模型在图像处理任务上的性能。

2.2 新增yaml文件

关键步骤二:在 /yolov5/models/ 下新建文件 yolov5_swin.yaml并将下面代码复制进去

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
# ch: 1   # no. input channel

depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  # input [b, 1, 640, 640]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2 [b, 64, 320, 320]
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4 [b, 128, 160, 160]
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8 [b, 256, 80, 80]
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16 [b, 512, 40, 40]
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32 [b, 1024, 20, 20]
   [-1, 3, C3, [1024]],
   [-1, 1, SwinStage, [1024, 2, 8, 4]], # [outputChannel, blockDepth, numHeaders, windowSize]
   [-1, 1, SPPF, [1024, 5]],  # 10
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

温馨提示:因为本文只是对yolov5n基础上添加swin模块,如果要对yolov5n/l/m/x进行添加则只需要修改对应的depth_multiple 和 width_multiple。


yolov5n/l/m/x对应的depth_multiple 和 width_multiple如下:

# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
 
# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
2.3 注册模块

关键步骤三:在yolov5/models/yolo.py中注册,大概在250行左右添加 ‘SwinStage’

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_swin.yaml的路径,如下图所示

建议大家写绝对路径,确保一定能找到

 🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码 

https://pan.baidu.com/s/1-VHn1ppJKuG4Q8omv_YYTw?pwd=3ugb

👆我修改后的代码,提取码: 3ugb

 4.总结

Swin Transformer 是一种基于分区注意力机制和层次化结构的先进深度学习模型,通过在局部区域内进行自注意力计算以及使用窗口式注意力机制,实现了在图像分类和目标检测等任务上优异的性能表现。其Transformer缩放技术提高了模型的可扩展性和效率,使其能够处理大规模图像数据,并在训练和推理过程中保持高效率。综合而言,Swin Transformer以其创新性的设计和卓越的性能,成为处理图像数据的一种领先模型。

  • 22
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值