YOLOv8改进 | 注意力机制 | 添加SimAM注意力机制【全网独家+附完整代码】

125 篇文章 60 订阅 ¥159.90 ¥299.90
本文介绍了SimAM,一种轻量级注意力模块,用于增强神经网络表示能力。通过详细解释SimAM的原理、实现步骤,并提供在YOLOv8中添加SimAM的教程,包括修改代码、注册模块和配置文件,帮助读者理解并实践这一机制,以提升目标检测性能。
摘要由CSDN通过智能技术生成

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

压缩和激励模块(SE)以及空间通道注意力模块(CBAM)的注意力机制取得了巨大成功。本文介绍了一种简单而有效的替代模块,即简单注意力模块(SimAM)。SimAM模块是一个即插即用的模块,无需额外的模态参数。在本文中,给大家带来的教程是在原来的主干网络添加SimAM。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转 ​​​​​​​

目录

1.原理

2. SimAM的代码实现

2.1 将SimAM添加到YOLOv8中

2.2 更改init.py文件

2.3 在task.py中进行注册

2.4 添加yaml文件

2.5 执行程序

3. 完整代码分享

4. GFLOPs

5. 进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值