YOLO11论文 | 可视化 | 对模型进热力图可视化增强改进有效性说服力支持od、seg、cls【论文、科研必备】

 秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的模型可视化。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

1.论文

论文地址:Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

2. 实验模型结果热力图可视化的重要性

实验模型结果的热力图可视化在深度学习和机器学习研究中具有重要意义,以下是几个关键点:

1. 帮助理解模型决策

热力图可以显示模型对输入数据的关注区域(例如,卷积神经网络在图像分类中的关注点)。通过可视化不同区域的激活强度,研究人员可以:

  • 分析模型在做出预测时关注的区域是否符合预期。

  • 发现模型可能错误依赖的特征或噪声,例如某些背景纹理或数据偏差。

2. 定位模型的缺陷和改进方向

通过热力图可视化,可以快速定位模型表现不佳的区域或场景。例如:

  • 在目标检测中,模型可能对特定目标检测效果不佳,可以通过观察热力图了解是否因为关注区域偏移。

  • 对语义分割任务,热力图能直观展示分割边界是否与真实边界对齐。

3. 提升模型可解释性

热力图是解释深度学习模型决策过程的一种重要工具,特别是对于黑箱模型。它能够:

  • 帮助用户理解复杂模型的行为。

  • 增强对模型的信任,特别是在医学、金融等对可靠性要求较高的领域。

4. 支持跨模型和实验的比较

通过生成不同模型的热力图,可以直观地比较它们的表现。例如:

  • 哪个模型关注了更多与目标相关的区域。

  • 哪个模型的关注模式更均匀或合理。 这对模型选择和优化有重要参考价值。

5. 辅助模型调优

在模型调优过程中,热力图能提供直接的反馈。例如:

  • 对于使用注意力机制的模型,可通过热力图验证注意力模块的有效性。

  • 检查特征融合模块是否能够突出关键特征。

6. 增强论文和报告的说服力

在科研论文和技术报告中,热力图是一种强大的可视化工具,用于展示实验结果:

  • 使结果更加直观易懂。

  • 通过展示模型在实际场景中的表现,增强结果的可信度。

3. 在ultralytics文件夹下新建文件gradcam.py

import cv2
import numpy as np
import os
from ultralytics import YOLO
from yolo11_gradcam.yolo_cam.eigen_cam import EigenCAM
from yolo11_gradcam.yolo_cam.utils.image import show_cam_on_image

# Load a model
model = YOLO(r"j:\yolo11n.pt")
target_layers = [model.model.model[-6]]

# Set the folder paths
input_folder = r"j:\1"
output_folder = r"j:\2"

# Create the output folder if it doesn't exist
if not os.path.exists(output_folder):
    os.makedirs(output_folder)

# Get the list of image files in the folder
image_files = [f for f in os.listdir(input_folder) if f.endswith(('.jpg', '.jpeg', '.png'))]

# Process each image in the folder
for image_file in image_files:
    # Read the image
    image_path = os.path.join(input_folder, image_file)
    image = cv2.imread(image_path)
    
    # Resize and preprocess the image
    image = cv2.resize(image, (640, 640))
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    rgb_img = image.copy()
    image = np.float32(image) / 255
....................

4. 完整代码

主页侧边

5.总结

通过以上的方法,我们成功实现模型的可视化。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——<专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

### 提高YOLO模型生成热力质量和美观度的方法 #### 1. 使用更精细的特征提取网络 为了提高热力的质量,可以选择更加复杂的骨干网络来增强特征提取的能力。例如,ResNet、EfficientNet 或者 MobileNet 等预训练模型通常具有更好的特征表示能力[^1]。 ```python import torch.nn as nn class ImprovedYOLO(nn.Module): def __init__(self, backbone='resnet50'): super(ImprovedYOLO, self).__init__() if backbone == 'resnet50': from torchvision.models import resnet50 self.backbone = resnet50(pretrained=True) elif backbone == 'efficientnet_b3': from efficientnet_pytorch import EfficientNet self.backbone = EfficientNet.from_pretrained('efficientnet-b3') # ...其他初始化代码... ``` #### 2. 应用注意力机制 引入SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等注意力模块可以帮助突出重要区域并抑制不相关的信息,从而使热力更为清晰和集中[^2]。 ```python from se_module import SELayer def add_attention(self): for layer in self.modules(): if isinstance(layer, nn.Conv2d): selayer = SELayer(channel=layer.out_channels) setattr(self, f'selayer_{id(layer)}', selayer) model.apply(add_attention) ``` #### 3. 调整锚框尺寸与比例 适当调整默认设置中的锚框参数可以让检测器更好地适应特定应用场景下的物体形状分布情况,而影响最终输出的置信度得分以及边界框位置准确性,间接提升了热力的表现效果. #### 4. 后处理优化 采用非极大值抑制(NMS)变体如Soft-NMS或DIoU-NMS代替传统的硬NMS方法;还可以尝试融合多尺度预测结果以获得更高分辨率的地显示. #### 5. 可视化技术改进 利用颜色映射函数将连续数值转换成直观的颜色变化范围;增加透明度控制以便叠加原始片查看重叠部分;最后可以通过平滑滤波去除噪声点使整体看起来更加顺滑自然[^3].
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值