违章停车识别与车辆跟踪:使用PP-YOLOE L和YOLOv5

本文介绍了如何利用PP-YOLOE L和YOLOv5模型进行车辆检测、识别、跟踪及违章停车判断。通过Python实现,该系统能实时检测车辆并根据轨迹判断违停,有助于提升城市交通管理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

软件适用于所有yolo系列识别,只需要根据需求更换.pt文件,车辆检测+行人检测+车辆识别+车牌识别+车辆跟踪与违章停车检测

yolov5/yolov8车牌识别2.0可视化QT界面

在这篇博客中,我们将探讨如何使用高精度模型PP-YOLOE L进行车辆跟踪,并根据车辆的跟踪轨迹以及指定的违停区域判断是否违章停车。我们将介绍如何使用Python编写代码来实现这个功能,同时用到YOLOv5作为辅助模型。请确保您已经安装了Python和相关的库,如OpenCV、Numpy等。

目录

违章停车识别与车辆跟踪yolov5源码:车辆违停源码

1. 介绍

2. 准备环境

3. PP-YOLOE L模型介绍

4. YOLOv5模型介绍

5. 车辆追踪

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能_SYBH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值