目录
引言
时间序列分析在许多领域都有着广泛的应用,例如金融、经济、社会科学、物理科学等。然而,时间序列分析通常涉及复杂的模型和技术,如ARIMA模型,状态空间模型等,这些模型的理解和应用需要丰富的统计知识。然而,随着深度学习的发展,我们现在有了新的工具可以进行时间序列分析:长短期记忆网络(LSTM)。
LSTM是一种特殊的循环神经网络(RNN),能够学习长期依赖性。LSTM由Hochreiter和Schmidhuber在1997年首次提出,并已被广泛应用于语音识别、手写识别和时间序列预测等任务中。在本文中,我们将利用R语言和Keras包来建立一个LSTM模型,用于预测时间序列数据。
数据准备
我们首先需要一些时间序列数据。在本例中,我们将使用R中的AirPassengers数据集,这个数据集记录了从1949年到1960年期间,每个月的国际航班乘客数量。
# 加载所需的库
library(keras)
library(tidyverse)
# 加载数据集
data(AirPassengers)
# 绘制数据集
autoplot(AirPasse