1. 引言
交通标志识别系统在自动驾驶、交通管理和安全监控中扮演着至关重要的角色。随着自动驾驶技术的迅猛发展,交通标志识别已经成为其中一项重要的应用。交通标志的准确识别能够为自动驾驶系统提供关键信息,从而确保行车安全并减少交通事故的发生。传统的交通标志识别方法多依赖于手工特征提取,而近年来,基于深度学习的自动化方法凭借其卓越的性能逐渐取代了传统方法。
本文将详细介绍如何基于深度学习模型YOLOv11(You Only Look Once)实现交通标志的实时识别。我们将结合深度学习模型、PySide6开发图形用户界面(GUI)来构建一个完整的交通标志识别系统。通过本文,您将了解如何进行交通标志的检测与识别,如何准备训练数据集、如何训练YOLOv11模型,以及如何使用PySide6开发图形用户界面进行可视化展示。
2. 系统设计与技术架构
2.1 系统目标
本系统的目标是使用YOLOv11深度学习模型实现对交通标志的实时检测和识别,能够处理多种交通标志类型并且能够实时展示识别结果。具体功能包括:
- 高效精准的标志识别:基于YOLOv11的目标检测模型,能够高效地从图像中识别出交通标志。
- 支持实时视频流识别:能够从摄像头获取实时视频流并进行标志检测。