【无标题】pca bp gabp cpobp算法的人脸识别技术研究

本文研究了PCA(主成分分析)结合BP(反向传播)神经网络、GABP(全局并行模糊BP)和CPoBP(竞争性偏置传播)算法在人脸识别技术上的应用。首先介绍了特征脸空间的构造,通过PCA处理得到特征数值。接着,详细阐述了预存人脸图像的特征提取过程,利用PCA操作还原特征脸。实验部分,使用神经网络进行训练和测试,观察PCA与不同神经网络算法在人脸识别中的表现。
摘要由CSDN通过智能技术生成

特征脸空间的构造

 

  对于所有的特征脸,可以采取PCA的操作得到其数值。原始图像投影到该特征空间中。原始图像x存成大小是n维的向量,训练集为(这里p为样本图像数量),形成矩阵X[n][p][9],其中行代表像元,列代表每幅人脸图像。将训练样本集中的人脸图像减去平均人脸图像,计算离散差值,将训练图像中心化。 将中心化之后图。中心化后的图像组成的矩阵X乘以它的转置矩阵得到协方差矩阵Ω,就是需要的特征数值。

训练集的每一个人脸图像都拉长一列,将他们组合在一起形成一个大矩阵A。假设每个人脸图像是M*M大小,那么拉成一列后每个人脸样本的维度就是N=M*M大小了。假设有20个人脸图像,那么样本矩阵A的维度就是20*N了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值