【机器学习 复习】第10章 K-Means聚类算法(重点)(含代码题)

一、概念

1.聚类

(1)是无监督学习,其实无监督学习就是无中生有,不给你标准答案(标签啊啥的),然后让你自己来。

(2)聚类就是这样,让机器自己根据相似特征把相似的东西放到一块。

(3)聚类就是将集合划分成由类(相)似的对象组成的多个类的过程。

聚类分析是研究(样品或指标)分类问题的一种统计分析方法。

(4)概念:

聚类是把各不相同的个体分割为有更多相似性子集合的工作,聚类生成的子集合称为簇(cluster)。

(5)聚类的要求

生成的簇内部的任意两个对象之间具有较高的相似度,于不同簇的两个对象间具有较高的相异度。

其中度量就用前面学习的欧氏距离,曼哈顿距离等进行测量。

(6)聚类的好坏不存在绝对标准

如扑克牌可以按花色分,也可以按数字分,具体情况具体分析。

(7)聚类与分类的区别:

聚类所要求划分的类是未知的,是无意识的,一般把它理解为无监督学习。

而分类算法是有训练样本的,属于监督学习。

(下面图,先是分类,后是聚类,可以很明显的看出标签的提示)

2.K-Means聚类算法

由聚类思想脱胎而生的nb算法之一。

(1)其中K代表要求划分成K个簇,means是均值的意思,也就是说每个簇的中心点是该簇中所有点的均值。

(2)保证每个簇必须包含一个对象,也要保证每个对象有且仅属于一个簇。

(3)流程:

a.随机选择k个点作为初始的聚类中心,注意这些点它可以是样本得到点,也可以不是。

b.对于剩下的点,根据其与聚类中心的距离,将其归入最近的族。

c.对每个族,计算所有点的均值作为新的聚类中心,注意这个点是产生出来的。

d.重复2、3直到聚类中心不再发生改变

(整个过程类似蠕动,中心点不断蠕动,直到发现好的地方)

(4)局限性:

a.图像过于抽象,平均值不靠谱。

b.数据量过大时,收敛缓慢。

(5)聚类分析的度量指标

a.外部指标:指用事先指定的聚类模型作为参考来评判聚类结果的好坏

b.内部指标:是指不借助任何外部参考,只用参与聚类的样本评判聚类结果好坏

二、习题

多选题:

3. 聚类的宗旨是(BD

A、类内距离最大化  

B、类间距离最大化  

C、类间距离最小化  

D、类内距离最小化  

判断题:

19. 聚类的目的是对样本集合进行自动分类,以发掘数据中隐藏的信息、结构,从而发现可能的商业价值。 ( T)      

代码题:

基于KMeans实现鸢尾花聚类:

简答题:

KNN 算法与 Kmeans 算法的区别,分别说一下算法流程。

KNN算法

  • 用途:分类或回归(监督学习)。
  • 流程
    1. 准备训练数据及标签。
    2. 选择距离度量方法。
    3. 计算测试样本与训练样本的距离。
    4. 选取K个最近的样本。
    5. 根据K个邻居的多数类别决定测试样本的类别。

KMeans算法

  • 用途:聚类(无监督学习)。
  • 流程
    1. 随机选择K个初始质心。
    2. 分配数据点到最近的质心。
    3. 更新每个簇的质心为簇内数据点的均值。
    4. 重复步骤2和3,直到质心不变或达到最大迭代次数。

区别

  • 目的:KNN用于分类/回归,KMeans用于聚类。
  • 训练:KNN无训练过程,直接预测;KMeans需反复迭代。
  • 监督类型:KNN是监督学习,KMeans是无监督学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值