增量学习入门【3】:模型分类

参考:
文献《连续学习研究进展》
文献《Deep Class-Incremental Learning: A Survey》

根据应对灾难性遗忘的措施不同,将当前增量学习模型分为以下几类:

一、基于正则化

1、参数正则化

防止与先前任务相关的权重发生漂移

EWC(权衡参数的重要性并与损失函数相关联)、PathInt、MAS、RWalk

2、知识蒸馏

LwF(知识蒸馏与微调相结合)、LFL、LwM、DMC、GD、iCaRL、

二、基于回放

  • 基于范例的解决方案,存储有限的范例,以防止忘记以前的任务
  • 这种范例指的是:保留少量的样本 或 生成合成图像 或 特征

GEM(当前任务与记忆任务的梯度大于90°时就将其投影到离记忆梯度最近的点,以约束损失函数不增加)iCaR、RWalk、

1、范例的存储

① 范例的数量
  • 内存固定时:必须首先删除一些范例,以为新的范例腾出空间,因此学习的任务 C C C和样本越多,每个任务对回放的代表性样本 m = M C m={M\over C} m=CM就越少。
  • 内存可扩展时:只需要添加当前任务中的 m m m个新样本,代价是内存的线性增加。
  • 两种情况下,每个类的样本数量都被强制执行为相同的,以确保所有类的相同表示
② 范例的采样策略
  • 随机选择:从可用的数据中随机抽样(随机抽样),这已经被证明是非常有效的,而不需要太多的计算成本。
  • 集群herding:基于其对应的特征空间表示来选择样本,如类均值

三、基于网络架构

1、隔离/冻结参数

Piggyback、PackNet、HAT、DAN

2、动态网络

EG、PNN、P&C、ACL、RPS

四、几种类型之间的联系

Alt
Alt

五、模型的性能比较

  • 通过从一个额外的数据集蒸馏获得的增益相当小
  • 无范例方法中,LwF得到了最好的结果
  • 知识蒸馏正则化(LwM)获得了优于权重正则化(EWC和MAS)的结果
  • 一般来说,增加范例可以更好地减少遗忘,且有范例的情况下再增加正则化并没有很大的改善(在加入fixed memory情况下,FT表现全比LwF好;在growing memory中,FT大部分比LwF好)
  • 当使用固定的范例记忆时,所有的方法在每个任务后都会得到改进。然而,对于不断增长的记忆,并非所有情况都是如此
  • 对于较长的任务序列,集群(herding)是一种比随机抽样更稳健的样本抽样方法,但对于短序列,herding并不优于其他方法
  • class-IL中明确处理新任务倾向偏差的方法,可以获得更好的性能
  • 预训练模型可以减轻增量学习的负担,并表现出非常强大的性能
  • 动态网络在评估中显示出最佳性能,但代价是额外的内存预算
  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值