YOLOv9/YOLOv8/YOLOv7改进之二十三:引入SimAM无参数注意力

本文介绍了将SimAM,一种无参数注意力模块,应用于YOLOv7目标检测算法的改进方法。SimAM基于神经科学理论,通过优化能量函数提升神经元的重要性,无需额外参数,适用于多种视觉任务,提高了模型的表达能力。实验显示在多个数据集上效果显著。

 ​前 言:作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。

需要更多程序资料以及答疑欢迎大家关注——微信公众号:人工智能AI算法工程师 

具体改进办法请关注后私信留言!关注即免费获取深度学习资料!

解决问题:中山大学在注意力机制方面的尝试,从神经科学理论出发,构建了一种能量函数挖掘神经元重要性,并对此推导出了解析解以加速计算。通过ImageNet分类、COCO检测与分割等任务验证了所提SimAM的灵活性与有效性。值得一提的是,所提SimAM是一种无参数注意力模块。

原理:

论文:

要在YOLOv8引入SimAM注意力模块,可以按照以下步骤进行: ### 1. 定义SimAM注意力模块 首先,需要定义SimAM注意力模块的代码。SimAM是一种轻量级的注意力机制,它不需要额外的参数,直接在特征图上计算注意力权重。以下是SimAM模块的代码实现: ```python import torch import torch.nn as nn class SimAM(nn.Module): def __init__(self, e_lambda=1e-4): super(SimAM, self).__init__() self.activaton = nn.Sigmoid() self.e_lambda = e_lambda def forward(self, x): b, c, h, w = x.size() n = w * h - 1 x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2) y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5 return x * self.activaton(y) ``` ### 2. 修改YOLOv8的模型结构 在YOLOv8中,通常需要修改模型的配置文件和相关的模型构建代码,以将SimAM模块插入到合适的位置。以下是一个示例,假设要将SimAM模块插入到YOLOv8的Backbone部分的某些层之后: ```python from ultralytics import YOLO from ultralytics.nn.modules import Conv # 加载预训练的YOLOv8模型 model = YOLO('yolov8n.pt') # 遍历模型的Backbone部分,插入SimAM模块 backbone = model.model.model[0] # 假设Backbone是模型的第0个模块 new_backbone = [] for layer in backbone: new_backbone.append(layer) if isinstance(layer, Conv): # 在Conv层之后插入SimAM模块 new_backbone.append(SimAM()) model.model.model[0] = nn.Sequential(*new_backbone) ``` ### 3. 训练和验证 插入SimAM模块后,可以使用修改后的模型进行训练和验证: ```python # 训练模型 model.train(data='path/to/data.yaml', epochs=100, imgsz=640) # 验证模型 results = model.val() ``` ### 注意事项 - **插入位置**:SimAM模块可以插入到不同的位置,如Backbone、Neck或Head部分,具体位置需要根据实际情况进行调整。 - **超参数调整**:SimAM模块中的`e_lambda`是一个超参数,需要根据具体任务进行调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值