【数据集NO.1】最经典大规模、多样化的自动驾驶视频数据集——BDD100K数据集

        本专栏主要分享本人收集整理的深度学习数据集资源,供大家参考使用。一个合适的数据集是论文写作、科研成功的开始。栏目会先简要介绍数据集,然后分享数据集的链接。本文分享最经典大规模、多样化的自动驾驶视频数据集BDD100K数据集。

一、BDD100K数据集简介

       目前,自动驾驶的公开数据集主要由视频和图片组成,近两年也增加了许多雷达数据。今天将介绍的数据集为加州大学伯克利分校发布的 BDD100K 数据集,该数据集为迄今规模最大、最多样的自动驾驶数据集之一。BDD100K 数据集,是加州大学伯克利分校 AI 实验室(BAIR)于 2018 年发布的,迄今为止最大规模、内容最具多样性的公开驾驶数据集之一。其包含的 10 万个高清视频序列,时长超过 1100 小时。其中,每个视频大约 40 秒长、720p、30 fps,还附有手机记录的 GPS/IMU 信息和时间戳,以显示大概的驾驶轨迹。BAIR 还对每个视频的第 10 秒对关键帧进行采样,得到 10 万张图片(图片尺寸:1280*720 ),并进行标注。这些图片还被标记了:图像标记、道路对象边界框、可驾驶区域、车道标记线和全帧实例分割。这些注释有助于理解不同场景中数据和对象统计的多样性。数据集中的视频是从美国各地收集的,涵盖不同时间、不同天气条件(包括晴天、阴天和雨天,以及白天和晚上的不同时间)和驾驶场景。收集数据集的地理位置分布在纽约、伯克利、旧金山等地。数据集中,道路目标检测是为公共汽车、交通灯、交通标志、人、自行车、卡车、摩托车、汽车、火车和乘车人等 100000 张图片上标注 2D 边界框;实例分割被用于探索具有像素级和丰富实例级注释,相关图像超过 10000 张;引擎区域是从 10 万张图片中学习复杂的可驾驶决策;车道标记是在 10 万张行车指南图片上的多种车道标注。车道标记类图片中,标注了实线、虚线、双线、单线等。该数据集由相关论文有《BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling》,该项目由伯克利 DeepDrive 产业联盟组织和赞助,该联盟研究计算机视觉和机器学习在汽车应用上的最新技术。

二、数据集链接

链接:https://pan.baidu.com/s/1kMBbHXrd04UF4bJ6YDIkQA 
提取码:qt28

如果有问题请关注下方,私信留言我哦。

### BDD100K 数据集详细介绍 #### 背景 BDD100K源自伯克利深度驾驶(Berkeley DeepDrive)实验室,包含10万条高质量的视频片段,每段时长约为10秒,总计覆盖超过160小时的真实世界驾驶场景。这些数据在全球多个城市、多种天气条件下收集,涵盖了丰富的道路、交通标志和行人等元素[^1]。 #### 特点与优势 该数据集提供了10,000个手动标注的图像,用于物体检测、分割和场景分类等多种任务。其技术分析显示,数据质量和多样性均达到较高水平,能够支持复杂模型训练需求。此外,由于数据来自不同环境条件下的实际行驶记录,因此非常适合用来测试自动驾驶系统的鲁棒性和适应能力。 #### 使用场景 适用于开发和验证各种计算机视觉算法特别是针对智能交通系统的研究工作;可用于研究车辆行为理解、事件预测以及其他高级辅助驾驶功能等方面的应用。具体来说: - **目标识别**:通过大量带标签的数据来提高对不同类型交通工具及其运动状态的理解精度; - **路径规划**:利用多样的路况信息帮助优化导航决策过程中的安全性考量因素; - **异常情况处理**:基于广泛存在的特殊案例学习如何更有效地应对突发状况。 #### 下载方式 为了获取完整的BDD100K数据集资源,建议访问官方网站并遵循官方指南完成注册流程后按需下载所需部分。通常情况下,网站会提供详细的说明文档指导用户顺利完成整个操作步骤。 #### 相关论文 关于此数据集的具体描述及应用实例可以参阅发表于CVPR 2018的工作《The Berkeley Deep Drive (BDD) Benchmark》。这篇文献不仅介绍了数据集构建背后的理念和技术细节,还展示了几个典型应用场景下取得的结果对比分析。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值