YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.84】融入2023最新大卷积核CNN架构RepLKNet升级版-UniRepLKNet

本文介绍了将目标检测算法YOLOv8的主干网络替换为UniRepLKNet,以提升性能。UniRepLKNet在音频、视频、点云、时间序列和图像识别任务中展现出了先进性能。文章提供了改进的基本原理和部分代码,并指出这种方法同样适用于YOLOv5、YOLOv7及其他目标检测算法的改进。
摘要由CSDN通过智能技术生成

  前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他目标检测算法同样可以适用进行改进。希望能够对大家有帮助。

一、解决问题

将目标检测算法的主干特征提取网络改为最新提出UniRepLKNet,通过某些与模态相关的预处理方法,所提出的模型在时间序列预测和音频识别任务上实现了最先进的性能。

二、基本原理

原文链接: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值