从成本中心,转向利润中心。
智能客服产品和服务的市场推广,一直是个很让人头疼的问题——作为实实在在的职能型产品,传统的智能客服主要基于预设的规则和知识库进行问题解答,这种方式虽然在处理常见或标准问题时效率较高,但如果“关键词”未能命中,不免闹出“智能客服不智能”的笑话。
尤其对于直面消费者的品牌商家们来说,客服在售前、售中和售后环节都起到很关键的作用,一款好的客服产品不仅能增加印象分,还能提高复购率,但传统智能服务系统主要基于一般性解答,更别谈为用户提供特定需求的个性化服务。
直到大模型的出现。
根据知名咨询机构IDC最新发布的数据,去年智能客服解决方案整体市场规模达到了30.8亿人民币,较2022年增长了近36.9%。换句话说,随着大模型技术的迭代升级,很多企业开始把客服作为探索大模型落地的重要场景,智能客服市场即将迎来新旧交替的变革时刻。
“通过云技术处理大规模的数据和请求,AI大模型能够实现快速响应和多轮对话的同时,还能提高整体客服团队的智能化水平,以便反哺其他业务板块。”张双颖是瓴羊的智能客服产品总监,在他看来,智能客服场景虽然不起眼,但想要真正做好却不容易。
他以某家电行业头部品牌为例,其自主研发的办公软件,需要照顾到研发、生产、供应链、销售、服务等10万名员工,这些员工每天会产生5000多个问题,涉及20多个部门知识,需要70多名客服运维,但这些提问重复率却高达40%,以及运维人员的回答不统一、专业性知识跨部门支持困难,这些难题光想想就头疼。
也就是说,一款真正能够面向市场的智能客服产品,不仅对准确度有着极高的要求,而且它在兼顾数据安全的同时,做到跟随业务的发展不断进化。这就意味着,厂商自身既要在智能客服场景有着很深的积淀,还得充分洞察和拆解客户需求。
拿瓴羊最新推出的Quick Service 2.0智能客服来说,依托先进的大模型技术和业务小模型,以及瓴羊在阿里巴巴十多年客服场景的能力沉淀,它在1.0版的基础上,又全面提升了三大核心功能:AI问答、AI辅助和AI知识库。相较于同类竞品,它是业内首个将AI Agent完整落地、可覆盖客服全场景的智能客服产品,同时也是首个通过信通院《数字原生应用基于大模型的智能客服》标准认证的产品。
这里就要涉及技术路线的选择问题,目前市面上利用大模型建设智能客服的主流思路有两种,第一种是RAG思路,简单来说就是将领域知识构建到向量数据库中,当用户和问题系统交互时前置检索到领域知识,然后提供给大模型使用;第二种是Fine-Tuning思路,即通过对大模型本体的更新,将知识更新进去,需要对模型调优、重新部署,甚至需要GPU重新训练模型。
当然,这两种路线都有各自的优势,张双颖告诉《新眸》,“企业在实际应用时,这两种路径都可以选择,但无论选择哪种路径,智能客服首先要解决的是幻觉问题。”以Quick Service为例,它在实际应用中的解答准确率高达93%,这是一个怎样的概念呢,几乎媲美一位对公司各项业务和产品技术都了如指掌的资深真人客服。
最关键的,这还是建立在综合很多离散型非结构化数据基础上的指标,而这,恰恰是其他玩家不具备、却是瓴羊的核心壁垒。
众所周知,脱胎于阿里数据中台团队的瓴羊,本身在数据服务方面就有着很深的积累,旗下围绕数据要素构建的产品矩阵,在各个领域的中大型企业都有着不错的口碑,按照这个逻辑,从底层的数据平台到上层的应用落地,Quick Service在瓴羊内部的萌芽也是顺理成章。
但就像硬币总有正反面,尽管大模型改造千行百业几乎已经成为共识,也有不少新的陷阱产生,最典型的,随着百模大战告一段落,越来越多的人把目光放在应用落地,拿着锤子找钉子成为业内常态,很多企业一开始就把大模型作为“良药”,倒推可以解决哪些业务问题,这样的做法不仅会浪费资源,还可能导致空中建楼阁。
大模型时代下的智能客服也不例外。
就当下来说,智能客服并不是什么新鲜事,要想获得客户认可,最终还是要回到价值本身,尤其对于场景复杂度较高的智能客服来说,与客户携手共创往往是最佳选择。
张双颖坦言,“尽管我们在数据服务方面有着很深的护城河,但Quick Service的打磨过程也投入了大量的时间和人力,当然这和具体客户的场景复杂度息息相关。”针对一些规模较大的客户,从立项到产品正式上线,一般需要花上1-3月时间。
有意思的是,在Quick Service实际落地的过程中,张双颖还观察到一个很有意思的转变。
以服务上汽为例,随着销量与门店量激增,对客服中心的智能化能力、响应速度乃至获客能力都提出了更高要求。对此,瓴羊的解法是“三全”,所谓“三全”,一是打造“全场景”,从售前线索产生、试乘试驾,到售后招揽咨询、赠换购各环节为客户提供完备的咨询服务;二是覆盖“全触点”,通过APP、官网、小程序的统一接入与IM的升级,整合零散获客渠道;三是实现全智能,升级售前/售后机器人、人工客服智能化能力,提升工作效率。
这带来的效果立竿见影。据张双颖透露,基于全渠道、全场景接入的全链路智能服务系统,Quick Service有效提升了知识的生产和服务效率,一方面,对门店营销、车机使用等高频问题的回答更加游刃有余;另一方面,在售前,机器人还能帮助品牌完成老客的回电保养、潜客的信息搜集等任务,完成向利润中心的价值转移。
换句话说,有了大模型加持的Quick Service,已经跳出了传统客服的范畴,不仅在理解和交互能力上得到大幅提升,甚至还能为企业带来业务增长。某种程度上来说,从被动服务转变为主动服务,从成本中心转变成利润中心,放在过去,这对于一个客服机器人来说是很难想象的,而如今却成为现实。
回到一开始讨论的话题,如果说对标海外做国产大模型已经成为过去式,那么面对产业数字化浪潮,摆在所有人眼前的关键命题,就是如何让一项新技术真正走出实验室,走进千行百业,就这方面来说,Quick Service的诞生与迭代及其背后的瓴羊,其实给行业带来了新的思路和方向。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓