1、吸收律证明(A∪(A∩B) = A )
文氏图:
注:三角形区域为 (A∩B)
证明:
∵A = A∩E //E为全集
∴A∪(A∩B) = (A∩E)∪(A∩B)
根据分配律倒推可知:
(A∩E)∪(A∩B) = A∩(B∪E)
∵B∪E = E
∴A∩(B∪E) = A∩E = A
点评:证明过程引入全集E,利用恒等律 A = A∩E,A∪E = E 的性质来增加或消去元素,从而拼凑成对应的定律
2、习题1(刘叙华—离散数学)
证明:A∪(B-A) = A∪B
文氏图: