为了实现Text2Sql,一步一步学习AI开发
一、Prompt是什么?
Prompt按字面理解就是提示的意思,给AI提问题时候的提示语,如下面的例子:
从开始"最推荐吃的水果是什么"到"现在最推荐吃的水果是什么"再到"现在最推荐吃的水果是什么?请简要回答,控制在100字以内",我们可以看到不同的提问,AI的回答是不一样的。和搜索时代一样,好的关键字,会让搜索引擎返回的搜索结果更精确,AI也是一样的好的提示也会让AI的回答更准确。因此就衍生出了**提示工程(Prompt Engineering)**这种技术,主要应用于预训练的大规模语言模型(如GPT系列模型),通过精心设计和优化输入的提示(Prompts),来引导模型生成高质量、准确且有针对性的输出。需要更深入的学习可以看一下吴恩达教授的《ChatGPT Prompt Engineering for Developers》
二、设计好Prompt的几项原则
1.清晰明确的目标
提示应该尽可能地清晰和具体,减少歧义,以便模型能够理解意图并提供相关的回答。
2.上下文相关
在提示中提供必要的背景信息,帮助模型理解问题的上下文,从而生成更贴切的回答。
3.简洁性
避免冗长的提示,保持简单直接,这样模型更容易理解和响应。
4.适应性和灵活性
设计能够适应不同情况和需求变化的提示,以便在各种场景下都能有效使用。
三、LangChain调用千帆示例
首先,可以去百度千帆大模型(有免费模型可以使用)注册相关信息,并安装LangChain相关类库,代码如下(示例):
import os
from langchain.prompts import (FewShotPromptTemplate