随着人工智能大模型的崛起,创业者们正迎来前所未有的机遇与挑战。在这场技术风暴中,投资者也纷纷瞄准着未来的发展方向。本文将为您解析AI大模型在创业领域中的契机,以及投资者对这场科技革命的独到见解。让我们一同探索AI大模型步入应用元年的引人注目之路。
AI大模型:引领未来的创业机遇与挑战
近来,科技创投领域掀起了一场AI(人工智能)大模型的热潮。在这个技术风暴中,创业者们看到了前所未有的机遇,同时也迎来了一系列新的挑战。投资机构的眼光也聚焦在这个领域,他们将“聪明的钱”投向何处呢?让我们一起深入剖析AI大模型在创业领域中的起源、机遇和挑战。
AI大模型:应用元年的序幕
在科技创投圈,AI大模型成为了风头无两的明星。据创新工场总裁陶宁的观点,随着大模型的不断成熟和稳定,2024年将迎来大模型应用元年。这一预测引领着创业者们将目光聚焦在了大模型的潜力上。
AI成为创业合伙人
陶宁认为,AI将成为创业者的绝佳合伙人。创新工场旗下的零一万物公司正在探索大模型的应用领域。对于创业者而言,AI的强大力量使得两三人的小团队也能取得过去需要数十人的团队才能完成的成果。这为创业者提供了前所未有的创新空间。
AI大模型的落地挑战
然而,大模型的广泛应用也带来了一系列新的挑战。周鸿祎在一次圆桌讨论中提出,大模型必须与业务高度结合。创业者应该避免总想着用AI创造全新的东西,而是应该回到旧应用、旧程序、旧网站、旧业务中,思考如何用AI重塑这些领域。此外,创业者选择的场景应该足够小、足够垂直,让AI能够真正解决实际问题。
投资者的追逐与思考
在“2024中关村早期投资论坛”上,多位知名投资人分享了对未来的展望。基石创投创始合伙人黄力波强调,AI将成为创业者的得力工具。同时,英诺天使基金创始合伙人李竹揭示了他的投资偏好,强调抓住超级周期,投资产业链关键创新,寻找未来的“链主”企业。
AI大模型的理性思考
在大炼“模型”的潮流下,业内人士也开始对此进行冷思考。猎豹移动董事长傅盛提醒大家破除“大模型迷信”,强调技术必须与产品、应用形成闭环,否则技术投入难以形成竞争壁垒。蚂蚁数科首席技术官王维明表示,大模型发展迅猛,但不应盲目崇拜。他建议结合行业具体问题和高质量数据,用好小模型、用好中模型,创造出实实在在的价值。
未来的发展方向:制造业与链主企业
除了人工智能,制造业成为了投资界关注的重要方向。投中信息CEO杨晓磊指出,中美两国的投资热点逐渐趋同,都集中在制造业上。他认为制造业的发展将为中美两国带来共同的机遇。
总结:AI大模型的未来之路
随着AI大模型步入应用元年,我们看到了创业者在技术革新中迎来的巨大机遇,同时也意识到了应用过程中的实际挑战。投资者的聪明资金正在投向产业链关键创新和制造业等领域,共同探索AI大模型的未来之路。在这场科技风暴中,我们期待看到创业者们如何驾驭这股浪潮,为未来的科技世界贡献更多创新力量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
