最近,看到了一个问题,问得很扎心。
为什么裁员首先从技术人员开始?
很多技术人员可能会感到困惑,甚至有些委屈:我们一直在默默地努力做出贡献,为什么最终却成了裁员的首批对象呢?
我倒觉得未必,虽然技术人员通常具有较高的薪酬水平。在需要减少开支时,公司可能会考虑裁减高薪岗位以降低成本。
但更多时候应该是,谁好裁,裁谁好的问题。
正如一些网友所言,技术人员的工作性质使得他们在短期财务调整中成为了相对“脆弱”的一环。
作为技术人,有什么应对之策呢?
首先,还是要相信自己,保持积极的心态,裁员不一定就是能力差,不要妄自菲薄。
最后有六点建议:
第一, 不要只是埋头苦干,要抬头看路。除了技术,你还需要了解公司的业务和市场动态,这样你才能提前感知到风险并做出应对。
第二, 主动与管理层建立沟通渠道。不要等到裁员名单公布时才去找领导谈话,那时候一切都晚了。平时就要多和领导沟通,让他们了解你的工作和价值。
第三, 拓展自己的人脉网络。在职场中,人脉有时比技术更重要。通过参加行业活动、社交聚会等方式,结识更多的人,增加自己的曝光度和影响力。这样,即使被裁员,你也能更快地找到新的机会。
第四, 持续学习,不断提升自己。技术日新月异,只有不断学习才能跟上时代的步伐。投资自己,提升自己的技能水平,让自己成为公司不可或缺的人才。这样,即使面临裁员,你也能有更多的谈判筹码。
第五, 制定职业规划,提前布局。不要等到裁员潮来临时才惊慌失措。平时要关注行业动态和公司发展趋势,提前规划好自己的职业路径。这样,即使被裁员,你也能迅速找到新的方向并重新开始。
第六, 保持积极心态,勇敢面对挑战。裁员并不是世界末日,而是一个新的开始。即使遭遇不幸,也要保持积极的心态,勇敢面对挑战。记住,每一次挫折都是成长的机会。
最后,我想说,职场中变化是常态,裁员不是世界末日,既然发生了,就好好去面对吧,这可能也是一个新的契机。
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。