一、什么是大模型幻觉
相信大家在使用ChatGPT或者其他大模型时会遇到这样的情况,模型答非所问甚至自相矛盾。这种现象我们称为“幻觉”
"幻觉"指的是模型生成的信息或回答不准确或虚假的现象。比如,模型可能在回答问题时编造不真实的细节,或者对事实产生错误的解释。在准确率要求非常高的场景下幻觉是不可接受的,比如新闻领域、医疗领域、金融领域等。
以下为几个典型的大模型幻觉案例:
1、阅读理解任务中的幻觉:大模型在回答问题时,可能会产生与原文无关的答案,甚至编造事实。
2、图像识别任务中的幻觉:大模型在识别图像时,可能会将无关的物体识别为目标物体,导致错误判断。
3、生成文本任务中的幻觉:大模型在生成文本时,可能会产生语法错误、逻辑混乱的现象。
二、大模型幻觉产生的原因
大模型幻觉的形成源于多个方面,大模型产生幻觉的根本原因,主要分为三个关键方面:数据、训练和推理。
1、来源于数据偏差
大模型的知识和能力主要来自于预训练数据,如果预训练数据使用了不完整、存在系统性误差或者过期的数据,那么就很可能导致知识的错误,从而引起幻觉现象。比如:
训练集中某个类别的样本过多,模型可能会过度偏向于预测这个类别,即使在遇到属于其他类别的数据时也是如此。
训练数据的不充分性:训练数据可能无法覆盖所有可能的情况,特别是在一些具有高度多样性的领域,其后果就是当模型遇到训练数据中未出现的情况时,可能会做出错误的预测,因为它没有学习到如何处理这些情况。
2、来源于训练
预训练阶段:大模型在这一阶段学习通用表征并捕捉广泛的知识,通常采用基于transformer的架构,在庞大的语料库中进行因果语言建模。但是,固有的架构设计和研究人员所采用的特定训练策略,可能会产生与幻觉相关的问题。比如:过拟合使得模型在训练数据上学习得太过精确,以至于它不仅学习了数据的真实分布,还学习了数据中的随机噪声和特异性特征。
3、来源于生成/推理
经过预训练后,解码在体现大模型能力方面发挥着重要作用。然而,解码策略的某些缺陷可能导致大模型出现幻觉。关键原因是解码策略固有的随机性、缺乏透明度和可解释性(深度学习模型其内部工作原理往往是不透明的,这使得很难理解模型为何做出特定预测)
三、大模型幻觉评估
评估大模型的幻觉程度可以通过以下方法
1、人工评审:通过专家对模型生成的内容进行审查,评估其准确性和一致性。
2、准确性测试:使用标准化测试集,对模型的回答与事实进行比对,检查其正确性。
3、用户反馈:收集用户对模型生成内容的反馈,尤其是错误报告,分析其常见问题。
4、自动化检测:应用自动化工具和算法检测生成内容中的不一致性或与事实的偏差。
5、对比基准:与已知的高质量模型进行对比,评估其生成内容的质量差异。(有些方法和内容可以参考论文:A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions)。
四、减少大模型幻觉产生的策略
减少大模型幻觉的产生可以通过以下几个策略:
1、提高数据质量:确保训练数据的准确性和全面性,去除数据中的错误、偏见和噪声。这包括清理数据、增加验证步骤以及使用高质量的标注数据。
2、模型校准:在模型生成后,应用后处理和校准技术来提高生成内容的准确性。可以使用可信度评估机制来判断生成的内容是否可靠。
3、增强上下文理解:改进模型对上下文的理解能力。例如,使用更复杂的上下文建模技术和推理机制,以便模型更好地处理长文本和复杂语境。
4、多模态融合:结合不同的数据源,如图像、声音和文本,来提高生成内容的准确性和全面性。
5、用户反馈机制:建立一个用户反馈系统,让用户报告生成的错误信息。模型可以利用这些反馈进行改进,减少未来的幻觉现象。
6、增加知识库和常识性知识:通过将模型与知识库和常识性知识结合,使其能更准确地回答基于事实的问题。
7、定期审查和更新:定期审查和更新模型及其训练数据,以保持其对新信息和变化的准确性。
AI时代的职场新潮流
听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
