简单用于原型展示的Rag应用并不复杂,但真要落地生产就会有很多现实的挑战,《AI工程化》在前面的文章里也介绍过很多领域内的一些解决思路和实践方案。这篇文章我们将介绍来自Florian June有关RAG落地时面临的三个常见挑战以及解决思路。
不规范的查询和短查询
在生产环境中,用户Query非常多样,也不一定标准;许多Query语义不完整、表述不清晰或表达多种意图。另外,用户的Query越短,就越难处理。比如,像 “推荐酒店”、"告诉我足球新闻和今天的天气 "或 "苹果的好处 "这样的查询,RAG 系统会很难处理。
通常有三种方法可以处理:
1)意图分析:确定一个或多个用户意图,缩小召回范围。
如图所示,意图分析包括将用户的查询归类为一个或多个预定义的意图,从而缩小搜索范围。
意图分析主要有以下四种方法:
a.基于预定义的规则或关键字,通过正则表达式进行匹配;
b.使用经典小模型分类,例如 Naive Bayes 分类器或 BERT。首先,我们需要训练一个分类器,BERT 的示例代码片段如下所示。然后,我们就可以用它对查询进行分类。
c.Query相似性检索。为预定义意图生成embedding,然后使用相同的嵌入模型为用户查询生成embedding。 通过向量相似性计算出最接近用户查询的前 k 个意图,如图所示。
d. LLM分类。构建一个提示,并利用 LLM 做出决策。此外,还可以提供用户的历史语境,以获得更准确的意图,如下图所示。
You are an advanced AI language model tasked with identifying the intent behind user queries. Given a user input, you need to classify the intent into one of the predefined categories.
## Categories
1. Fruit: The user is asking about fruits, their benefits, types, or any other fruit-related information.2. Technology: The user is inquiring about technology-related topics, including gadgets, software, hardware, or tech news.
3. Entertainment: The user is seeking information related to entertainment, such as movies, music, games, or celebrities.4. Sports: The user is asking about sports-related topics, including scores, teams, players, or sporting events.
5. Other: Any other intent not covered by the above categories.
Please provide the user input and the identified intent category.
## Example
### Example 1
User Input: "How many calories are in an orange?"
Historical Context: "Give me some low-calorie fruits."
Identified Intent: Fruit
### Example 2
User Input: “What were the results of last night’s NBA game?”
Historical Context: “I like basketball very much”
Historical Context: “What are the rules of basketball”
Identified Intent: Sports
## Now it's Your Turn
Please provide the identified intent for each user input based on the historical context.
User Input: {user_input}
Historical Context: {historical_context}
``Identified Intent:
1
通过确定问题的意图,我们可以缩小需要检索的知识库范围。这样就能减少容易混淆的查询的影响,提高检索的准确性。这里介绍一个开源项目可以参考:https://github.com/answerlink/IntelliQ 。
更多可参看:大模型应用与LUI(自然语言交互)落地的关键模块——语义路由实现总结。
2)关键词提取:确定查询的关键词,并根据关键词进行检索。
关键词提取的目的是从给定文本中识别出最具代表性和意义的单词或短语,如图 所示。
这些关键词反映了文本的主题、内容或重要信息。如图,在 RAG 中使用关键词提取的目的是从用户查询和文档中提取关键词,以方便检索。在图中,可以看到两个虚线框:红色虚线框代表通过关键词检索获得的原始信息块,蓝色虚线框代表通过普通检索获得的原始信息块。在获得这两个虚线框后,我们可以执行重新排序或其他后处理方法。很明显,关键词检索可以辅助普通检索。
有以下三种方法从原始数据块或用户查询中获取关键词。
a.TF-IDF:首先,进行标记化和停止词去除。然后,计算每个标记的反文档频率(IDF)和每个标记的 TF-IDF 分数。最后,根据计算出的 TF-IDF 分数对词语进行排序。标记词的排名越靠前,说明它在文档中的重要性越高。
b.训练Bert模型或使用现有模型,如 KeyBERT:直接提取关键词,形成最终的关键词列表。
c.使用 LLM 提取关键词。流程如下图。
3)澄清和询问:主动向用户提问,以获取更多信息。例如,对于 "苹果的好处 "这一查询,系统可以提问:"您是指水果还是技术公司?
澄清和询问是一种重要的策略,尤其是在处理模糊、不完整或含糊的用户询问时。例如,如果用户直接询问 “推荐酒店”,我们就可以通过澄清和询问收集用户的首选地点、价格范围和其他偏好等信息,从而提供更准确的回复。
a.传统方法。首先,检测用户输入中的模糊或不清晰部分。这可以通过关键词提取来实现,即找出常见的模棱两可或不清楚的词语。 另外,也可以使用意图分析技术来分析输入的含义和上下文。生成澄清或询问回复,这可以通过预定义模板或使用生成模型来实现。处理用户的后续输入,并根据新输入更新理解和任务执行。
b.使用 LLM。可以在提示中加入以下内容:“如果您无法根据背景知识回答用户的询问,那么您可以向用户提出后续问题,但仅限于 4 个问题”。
针对于不规范的查询和短查询处理的三种方法并不是孤立的,可以相互结合。例如,可以通过关键词提取实现意图分析,澄清和查询可以与意图分析相结合。
2.集成结构化数据
通常RAG处理的都是一些非结构化的文档数据,比如 markdown,PDF等 。之前也有一些关于pdf解析的文章,大家可以翻阅,如:gptpdf:一个简单巧妙的复杂pdf解析工具,提升RAG效果
但在实际生产环境中,仅使用非结构化数据完成整个业务流程是很少见的。一般来说,有需求将公司现有关系数据库甚至 Excel 文件中的信息整合到 RAG 流程中。
将结构化数据整合到 RAG 流程中有三种方法:
a.将关系数据库中每个表的每一行视为一个块,然后进行嵌入。但这种方法忽略了表的整体信息,破坏了表内的相关性,往往会导致检索结果不佳。
b.与其将表中每一行的信息向量化不如嵌入元数据,如表描述、视图描述和字段信息。在对用户的查询进行向量化后,使用嵌入来查找相应的表、视图或字段。然后使用一些预先编写的 SQL 函数进行查询。这种方法在事先编写 SQL 函数时工作量较大,但与其他方法相比,执行起来相对稳定。
c.Text2SQL。使用 LLM 将用户的问题转换为 SQL 语句。然后,它将数据库查询结果发送给 LLM,生成最终答案。这种方法相对优雅,对于简单的查询效果很好。但是,如果用户的查询比较复杂,结果就会不稳定。
3.私有化部署
在 RAG 的实际应用中,有些客户对数据的保密性要求很高,因此需要在企业内部进行私有部署。需要注意以下三点:
1)模型参数的选择:如果 LLM 的主要功能是归纳和生成,那么 7B 或 13B 等较小的规模是可以接受的。如果对知识推理、逻辑推理、多步骤推理等有较高要求,则参数越多越好,如 33B 或 70B。
2)如果客户端处于没有外部互联网接入的环境,则有必要提前下载 PyTorch 和 Transformers 等 Python 库的所有依赖项。
3)容器化(如 Docker)可以简化环境配置和管理。为了提高推理速度并减少资源消耗,我们可以对模型进行量化。 此外,为确保高效的请求处理和响应,应选择高效的 LLM 服务框架来部署 RAG 系统。如果某些开源框架无法满足您的需求,请自行编写必要的模块。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。