AI:深度学习-核心算法

深度学习的核心算法主要包括以下几种:
  反向传播算法(Backpropagation):
      反向传播算法是训练神经网络最常用的方法。在前向传播阶段,输入数据通过网络得到输出;在反向传播阶段,根据网络的输出和目标值计算误差,并将这个误差反向传播回去,以更新网络的权重。
  梯度下降算法(Gradient Descent):
      梯度下降是用于优化神经网络权重和偏置的算法。它通过计算损失函数对参数的梯度,并沿梯度相反的方向更新参数,以达到最小化损失函数的目的。

  梯度下降算法:

import numpy as np

def gradient_descent(X, y, learning_rate=0.01, iterations=1000):
    m, n = X.shape
    theta = np.zeros((n, 1))
    history = []

    for i in range(iterations):
        prediction = X.dot(theta)
        error = prediction - y.reshape(-1, 1)
        gradient = (1/m) * X.T.dot(error)
        theta -= learning_rate * gradient
        history.append(theta)
    
    return theta, history
//假设 X 和 y 已经被定义并包含训练数据
//theta, history = gradient_descent(X, y)

  随机梯度下降(Stochastic Gradient Descent, SGD):
      随机梯度下降是梯度下降的一个变体,它在每次迭代中只使用一个样本来更新权重,而不是使用整个数据集,这大大加快了训练速度。

  随机梯度下降(SGD):

def stochastic_gradient_descent(X, y, learning_rate=0.01, iterations=1000):
    m, n = X.shape
    theta = np.zeros((n, 1))

    for i in range(iterations):
        for j in range(m):
            random_index = np.random.randint(m)
            x_i = X[random_index:random_index+1]
            y_i = y[random_index]
            prediction = x_i.dot(theta)
            error = prediction - y_i
            gradient = x_i.T.dot(error)
            theta -= learning_rate * gradient
    
    return theta

// theta = stochastic_gradient_descent(X, y)


  动量(Momentum):
      动量方法是一种加速SGD在相关方向上收敛并抑制震荡的技术。它通过引入一个动量项来积累之前梯度的信息,以加速收敛并减少训练过程中的震荡。
  Adam(Adaptive Moment Estimation):
    Adam是一种自适应学习率的优化算法,它结合了Momentum和RMSprop(均方根传播)的思想。Adam通过计算梯度的一阶矩估计和二阶矩估计来调整每个参数的学习率。

  Adam优化器:

def adam_optimizer(X, y, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, iterations=1000):
    m, n = X.shape
    theta = np.zeros((n, 1))
    m_t = np.zeros((n, 1))
    v_t = np.zeros((n, 1))

    for t in range(iterations):
        gradients = (1/m) * X.T.dot(X.dot(theta) - y.reshape(-1, 1))
        m_t = beta1 * m_t + (1 - beta1) * gradients
        v_t = beta2 * v_t + (1 - beta2) * gradients**2
        m_hat = m_t / (1 - beta1**(t+1))
        v_hat = v_t / (1 - beta2**(t+1))
        theta -= learning_rate * m_hat / (np.sqrt(v_hat) + epsilon)
    
    return theta

// theta = adam_optimizer(X, y)


  RMSprop:
     RMSprop是另一种自适应学习率方法,它通过除以过去梯度的平方的指数衰减平均值来调节学习率,有助于处理优化过程中的震荡问题。
  批量归一化(Batch Normalization):
      批量归一化是一种用于改善神经网络性能和稳定性的技术。它在每一层神经网络的激活之前,对输入进行归一化处理,有助于解决内部协变量偏移问题,并能减少模型对初始权重的敏感性,

  卷积神经网络(Convolutional Neural Networks, CNN):
      CNN特别适用于处理图像数据。它通过卷积层、池化层和全连接层的组合来提取图像特征,并进行分类或回归任务。
  循环神经网络(Recurrent Neural Networks, RNN):
      RNN适用于处理序列数据,如文本或时间序列。RNN通过循环连接捕捉序列中的时间依赖性,常用于机器翻译、文本生成等任务。
  长短期记忆网络(Long Short-Term Memory, LSTM):
       LSTM是RNN的一种变体,它通过引入门控机制和记忆单元来解决RNN在处理长序列时的梯度消失和梯度爆炸问题。


  这些算法构成了深度学习的基础,并在实际应用中发挥着重要作用。不同的任务和数据类型可能需要选择不同的算法和模型结构。对于复杂的模型和数据集,通常会使用深度学习框架(如TensorFlow或PyTorch),这些框架提供了更高级的优化器和更易于管理的数据管道。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值